5,246 research outputs found

    Strong wave-mean-flow coupling in baroclinic acoustic streaming

    Full text link
    The interaction of an acoustic wave with a stratified fluid can drive strong streaming flows owing to the baroclinic production of fluctuating vorticity, as recently demonstrated by Chini et al. (J. Fluid Mech., 744, 2014, pp. 329). In the present investigation, a set of wave/mean-flow interaction equations is derived that governs the coupled dynamics of a standing acoustic wave mode of characteristic (small) amplitude {\epsilon} and the streaming flow it drives in a thin channel with walls maintained at differing temperatures. Unlike classical Rayleigh streaming, the resulting mean flow arises at O({\epsilon}) rather than at O({\epsilon^2}). Consequently, fully two-way coupling between the waves and the mean flow is possible: the streaming is sufficiently strong to induce O(1) rearrangements of the imposed background temperature and density fields, which modifies the spatial structure and frequency of the acoustic mode on the streaming time scale. A novel Wentzel-Kramers-Brillouin-Jeffreys analysis is developed to average over the fast wave dynamics, enabling the coupled system to be integrated strictly on the slow time scale of the streaming flow. Analytical solutions of the reduced system are derived for weak wave forcing and are shown to reproduce results from prior direct numerical simulations (DNS) of the compressible Navier Stokes and heat equations with remarkable accuracy. Moreover, numerical simulations of the reduced system are performed in the regime of strong wave mean flow coupling for a fraction of the computational cost of the corresponding DNS. These simulations shed light on the potential for baroclinic acoustic streaming to be used as an effective means to enhance heat transfer.Comment: 29 pages, 7 figure

    State of Utah v. Johnson : Unknown

    Get PDF
    status: publishe

    Energy-efficient domain wall motion governed by the interplay of helicity-dependent optical effect and spin-orbit torque

    Full text link
    Spin-orbit torque provides a powerful means of manipulating domain walls along magnetic wires. However, the current density required for domain wall motion is still too high to realize low power devices. Here we experimentally demonstrate helicity-dependent domain wall motion by combining synchronized femtosecond laser pulses and short current pulses in Co/Ni/Co ultra-thin film wires with perpendicular magnetization. Domain wall can remain pinned under one laser circular helicity while depinned by the opposite circular helicity. Thanks to the all-optical helicity-dependent effect, the threshold current density due to spin-orbit torque can be reduced by more than 50%. Based on this joint effect combining spin-orbit torque and helicity-dependent laser pulses, an optoelectronic logic-in-memory device has been experimentally demonstrated. This work enables a new class of low power spintronic-photonic devices beyond the conventional approach of all-optical switching or all-current switching for data storage.Comment: 21 pages, 5 figure

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap
    • 

    corecore