27 research outputs found

    Generalized Spring Tensor Model: A New Improved Load Balancing Method in Cloud Computing

    Full text link
    Significant characteristics of cloud computing such as elasticity, scalability and payment model attract businesses to replace their legacy infrastructure with the newly offered cloud technologies. As the number of the cloud users is growing rapidly, extensive load volume will affect performance and operation of the cloud. Therefore, it is essential to develop smarter load management methods to ensure effective task scheduling and efficient management of resources. In order to reach these goals, varieties of algorithms have been explored and tested by many researchers. But so far, not many operational load balancing algorithms have been proposed that are capable of forecasting the future load patterns in cloud-based systems. The aim of this research is to design an effective load management tool, characterized by collective behavior of the workflow tasks and jobs that is able to predict various dynamic load patterns occurring in cloud networks. The results show that the proposed new load balancing algorithm can visualize the network load by projecting the existing relationships among submitted tasks and jobs. The visualization can be particularly useful in terms of monitoring the robustness and stability of the cloud systems. © Springer International Publishing Switzerland 2015

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    What is the role of the body in science education? A conversation between traditions

    No full text
    Bodily engagement with the material and sociocultural world is ubiquitous in doing and learning science. However, science education researchers have often tended to emphasize the disembodied and nonmaterial aspects of science learning, thereby overlooking the crucial role of the body in meaning-making processes. While in recent years we have seen a turn towards embracing embodied perspectives, there persist considerable theoretical and methodological differences within research on embodiment in science education that hamper productive discourse. What is needed is a careful examination of how different traditions and disciplines, among them philosophy, social semiotics, and cognitive science, bear on embodiment in science education research. This paper aims to explore and articulate the differences and convergences of embodied perspectives in science education research in the form of a dialogue between three fictitious personas that stand for the cognitive, social-interactionist, and phenomenological research traditions. By bringing these traditions into dialogue, we aim to better position the role of the body in the science education research landscape. In doing so, we take essential steps towards unifying terminology across different research traditions and further exploring the implications of embodiment for science education research

    Embodiment in physics learning : A social-semiotic look

    No full text
    In this paper, we present a case study of a pair of students as they use nondisciplinary communicative practices to mechanistically reason about binary star dynamics. To do so, we first review and bring together the theoretical perspectives of social semiotics and embodied cognition, therein developing a new methodological approach for analyzing student interactions during the learning of physics (particularly for those interactions involving students’ bodies). Through the use of our new approach, we are able to show how students combine a diverse range of meaning-making resources into complex, enacted analogies, thus forming explanatory models that are grounded in embodied intuition. We reflect on how meaning-making resources—even when not physically persistent—can act as coordinating hubs for other resources as well as how we might further nuance the academic conversation around the role of the body in physics learning.Title in Licentiate thesis list of papers: A social-semiotic look at embodiment in physics learning</p
    corecore