41 research outputs found

    The Allometry of Prey Preferences

    Get PDF
    The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems

    Societal attention toward extinction threats : a comparison between climate change and biological invasions

    Get PDF
    Public attention and interest in the fate of endangered species is a crucial prerequisite for effective conservation programs. Societal awareness and values will largely determine whether conservation initiatives receive necessary support and lead to adequate policy change. Using text data mining, we assessed general public attention in France, Germany and the United Kingdom toward climate change and biological invasions in relation to endangered amphibian, reptile, bird and mammal species. Our analysis revealed that public attention patterns differed among species groups and countries but was globally higher for climate change than for biological invasions. Both threats received better recognition in threatened than in non-threatened species, as well as in native species than in species from other countries and regions. We conclude that more efficient communication regarding the threat from biological invasions should be developed, and that conservation practitioners should take advantage of the existing attention toward climate change.Peer reviewe

    Assessing long-term effects of artificial light at night on insects: what is missing and how to get there

    Get PDF
    Widespread and significant declines of insect population abundances and biomass are currently one of the most pressing issues in entomology, ecology and conservation biology. It has been suggested that artificial light at night is one major driver behind this trend. Recent advances in the gathering and analysis of long-term data sets of insect population and biomass trends, however, have mostly focused on the effects of climate change and agricultural intensification. We posit here that adequate assessment of artificial night at light that would be required to evaluate its role as a driver of insect declines is far from trivial. Currently its implementation into entomological monitoring programmes and long-running ecological experiments is hampered by several challenges that arise due to (i) its relatively late appearance as a biodiversity threat on the research agenda and (ii) the interdisciplinary nature of the research field where biologists, physicists and engineers still need to develop a set of standardised assessment methods that are both biologically meaningful and easy to implement. As more studies that address these challenges are urgently needed, this article aims to provide a short overview of the few existing studies that have attempted to investigate longer-term effects of artificial light at night on insect populations. To improve the quality and relevance of studies addressing artificial light at night and its effect on insects, we present a set of best practise recommendations where this field needs to be heading in the coming years and how to achieve it

    Empirical evidence of type III functional responses and why it remains rare

    Get PDF
    More than 70 years after its introduction, the framework of resource density-dependent consumption rates, also known as predator-prey functional responses, remains a core concept in population and food web ecology. Initially, three types of responses were defined: linear (type I), hyperbolic (type II), and sigmoid (type III). Due to its potential to stabilize consumer-resource population dynamics, the sigmoid type III functional response immediately became a “holy grail” in population ecology. However, experimentally proving that type III functional responses exist, whether in controlled laboratory systems or in nature, was challenging. While theoretical and practical advances make identifying type III responses easier today, decades of research have brought only a limited number of studies that provide empirical evidence for type III response curves. Here, we review this evidence from laboratory- and field-based studies published during the last two decades. We found 107 studies that reported type III responses, but these studies ranged across various taxa, interaction types, and ecosystems. To put these studies into context, we also discuss the various biological mechanisms that may lead to the emergence of type III responses. We summarize how three different and mutually independent intricacies bedevil the empirical documentation of type III responses: (1) challenges in statistical modeling of functional responses, (2) inadequate resource density ranges and spacing, and (3) biologically meaningful and realistic design of experimental arenas. Finally, we provide guidelines on how the field should move forward based on these considerations

    Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience

    Get PDF
    Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity

    iEcology: Harnessing Large Online Resources to Generate Ecological Insights

    Get PDF
    Digital data are accumulating at unprecedented rates. These contain a lot of information about the natural world, some of which can be used to answer key ecological questions. Here, we introduce iEcology (i.e., internet ecology), an emerging research approach that uses diverse online data sources and methods to generate insights about species distribution over space and time, interactions and dynamics of organisms and their environment, and anthropogenic impacts. We review iEcology data sources and methods, and provide examples of potential research applications. We also outline approaches to reduce potential biases and improve reliability and applicability. As technologies and expertise improve, and costs diminish, iEcology will become an increasingly important means to gain novel insights into the natural world.Peer reviewe

    Revisiting global trends in freshwater insect biodiversity

    Get PDF
    A recent global meta-analysis reported a decrease in terrestrial but increase in freshwater insect abundance and biomass (van Klink et al., Science 368, p. 417). The authors suggested that water quality has been improving, thereby challenging recent reports documenting drastic global declines in freshwater biodiversity. We raise two major concerns with the meta-analysis and suggest that these account for the discrepancy with the declines reported elsewhere. First, total abundance and biomass alone are poor indicators of the status of freshwater insect assemblages, and the observed differences may well have been driven by the replacement of sensitive species with tolerant ones. Second, many of the datasets poorly represent global trends and reflect responses to local conditions or nonrandom site selection. We conclude that the results of the meta-analysis should not be considered indicative of an overall improvement in the condition of freshwater ecosystems.FH and GK are supported through the project“Species protection through environmental friendly lighting”funded bythe Federal Agency for Nature Conservation (BfN) within the framework of the Federal Programme for BiologicalDiversity with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).AM acknowledges funding through US NSF Macrosystems Biology Program (grant no. 1442595), and SD by the LeibnizCompetition (J45/2018). The authors are grateful to the reviewers and the editor for their comments, which helpedimprove the text. Open access funding enabled and organized by Projekt DEA

    Complex responses of global insect pests to climate warming

    Get PDF
    Although it is well known that insects are sensitive to temperature, how they will be affected by ongoing global warming remains uncertain because these responses are multifaceted and ecologically complex. We reviewed the effects of climate warming on 31 globally important phytophagous (plant-eating) insect pests to determine whether general trends in their responses to warming were detectable. We included four response categories (range expansion, life history, population dynamics, and trophic interactions) in this assessment. For the majority of these species, we identified at least one response to warming that affects the severity of the threat they pose as pests. Among these insect species, 41% showed responses expected to lead to increased pest damage, whereas only 4% exhibited responses consistent with reduced effects; notably, most of these species (55%) demonstrated mixed responses. This means that the severity of a given insect pest may both increase and decrease with ongoing climate warming. Overall, our analysis indicated that anticipating the effects of climate warming on phytophagous insect pests is far from straightforward. Rather, efforts to mitigate the undesirable effects of warming on insect pests must include a better understanding of how individual species will respond, and the complex ecological mechanisms underlying their responses

    The role of species charisma in biological invasions

    Get PDF
    Commonly used in the literature to refer to the "attractiveness", "appeal", or "beauty" of a species, charisma can be defined as a set of characteristics - and the perception thereof - that affect people's attitudes and behaviors toward a species. It is a highly relevant concept for invasion science, with implications across all stages of the invasion process. However, the concept of invasive alien species (IAS) charisma has not yet been systematically investigated. We discuss this concept in detail, provide a set of recommendations for further research, and highlight management implications. We review how charisma affects the processes associated with biological invasions andIASmanagement, including species introductions and spread, media portrayals, public perceptions of species management, research attention, and active public involvement in research and management. Explicit consideration ofIAScharisma is critical for understanding the factors that shape people's attitudes toward particular species, planning management measures and strategies, and implementing a combination of education programs, awareness raising, and public involvement campaigns.Peer reviewe
    corecore