159 research outputs found

    Case Note: Criminal Law—Dangerous, Not Deadly: Possession of a Firearm Distinguished from Use Under the Felony-Murder Rule—State v. Anderson

    Get PDF
    This Note first briefly examines the history of the felony-murder doctrine both generally and in Minnesota. Second, this Note describes the decision and analysis in State v. Anderson, the latest case in Minnesota to deal with the felony-murder doctrine. Third, this Note concludes that in an effort to reach the right result, the court misapplied its previous precedent and left the lower courts with no clear standard for guidance in the future. Finally, this Note suggests that a workable standard might be found in limiting the application of the rule to deaths that occur in furtherance of the felony

    D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording

    Get PDF
    Dopamine (DA) is the major physiological regulator of prolactin secretion from the anterior pituitary, exerting a tonic inhibitory control that is mediated by D2 DA receptors. D2 receptors in both the anterior pituitary and CNS are thought to produce some of their inhibitory effects via a coupling to potassium (K+) channels to increase K+ conductance. Utilizing the reverse hemolytic plaque assay and patch-clamp techniques, we characterize the actions of DA on membrane potential and associated DA-activated whole-cell current, as well as the single K+ channels that underlie the response in primary rat lactotrophs. We demonstrate that DA (5 nM to 1 microM) or D2- selective agonists (RU24213 and quinpirole) evoke a hyperpolarization of membrane potential that was blocked by D2 antagonists and associated with an increased K+ conductance. Whole-cell current responses to ramp voltage commands revealed a DA-activated current whose reversal potential was near the calculated Nernst potential for K+, varied as a function of K+ concentration, exhibited some inward rectification, and was Ca2+ independent. The current was insensitive to tetraethylammonium (TEA; 10 mM), partially blocked by 4-aminopyridine (4-AP; 5 mM), and almost completely inhibited by quinine (100 microM). Cell-attached recordings in the presence of DA or a D2 agonist revealed the opening of a K+ channel that was not present in the absence of DA or when a D2 receptor antagonist was included with DA. Analysis of the single- channel current showed the current-voltage relationship to be linear at negative patch potentials and yielded a unitary conductance of 40.2 pS in the presence of 150 mM KCl. The channels were not blocked by TEA (10 mM), were slightly suppressed by 4-AP (5 mM), and were almost completely inhibited by quinine (100 microM). These experiments establish that in primary rat lactotrophs, DA acts at D2 receptors to activate the opening of single K+ channels, which results in an increase in K+ conductance and associated membrane hyperpolarization. This is the first characterization of single DA-activated K+ channels in an endocrine cell

    Early subretinal allograft rejection is characterized by innate immune activity

    Get PDF
    Successful subretinal transplantation is limited by considerable early graft loss, despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a non-immunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation and the neutrophil chemoattractant, KC/GRO/CINC, was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, non-immunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7 and 28 days post-operatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b & F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ε) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p<0.001) reduced between post-operative day (POD) 3 (90% ± 4%) and POD 7 (20% ± 7%). CD11b+, F4/80+ and Gr1 Ly-6G+ cells increased significantly (p<0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Co-labeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7 and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ε was low and did not differ significantly between time-points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal for the first time a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response

    Incorporating real time velocity map image reconstruction into closed-loop coherent control

    Get PDF
    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an “onion-peeling” (also known as “back projection”) method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    Unworking Milton: Steps to a Georgics of the Mind

    Full text link
    Traditionally read as a poem about laboring subjects who gain power through abstract and abstracting forms of bodily discipline, John Milton’s Paradise Lost (1667, 1674) more compellingly foregrounds the erotics of the Garden as a space where humans and nonhumans intra-act materially and sexually. Following Christopher Hill, who long ago pointed to not one but two revolutions in the history of seventeenth-century English radicalism—the first, ‘the one which succeeded[,] . . . the protestant ethic’; and the second, ‘the revolution which never happened,’ which sought ‘communal property, a far wider democracy[,] and rejected the protestant ethic’—I show how Milton’s Paradise Lost gives substance to ‘the revolution which never happened’ by imagining a commons, indeed a communism, in which human beings are not at the center of things, but rather constitute one part of the greater ecology of mind within Milton’s poem. In the space created by this ecological reimagining, plants assume a new agency. I call this reimagining ‘ecology to come.

    Plant-made vaccines in support of the Millennium Development Goals

    Get PDF
    Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries—the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond
    corecore