4,485 research outputs found

    Topology and shape optimization of induced-charge electro-osmotic micropumps

    Get PDF
    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.Comment: 18 pages, latex IOP-style, 7 eps figure

    Enrichment of Genetic Variants for Rheumatoid Arthritis within T-Cell and NK-Cell Enhancer Regions

    Get PDF
    To identify disease-causative variants, we intersected the published results of a metaanalysis of genome-wide association studies (GWAS) for rheumatoid arthritis (RA) with the set of enhancer regions for 71 primary cell types that was provided by the FANTOM consortium. We first retrieved all single nucleotide polymorphisms (SNPs) that are associated (P \u3c 5 x 10(8)) with RA in the GWAS meta-analysis and that are located in any of these enhancer regions. After excluding the major histocompatibility complex (MHC) region, we identified 50 such RA-associated SNPs that are located in enhancer regions. Enhancer sets from different cell types were then compared with each other for their number of RA-associated SNPs by permutation analysis. This analysis showed that RA-associated SNPs are preferentially located in enhancers from several immunological cell types. In particular, we see a strong relative enrichment in enhancer regions that are active in T cells (P \u3c 0.001) and NK cells (P \u3c 0.001). Several loci display multiple RA-associated SNPs in tight linkage disequilibrium that are located within the same or neighboring enhancers. These haplotypes may have a greater likelihood to influence enhancer activity than any SNP on its own. Taken together, these results support the hypothesis that RA-causative variants often act through altering the activity of immune cell enhancers. The enrichment in T-cell and NK-cell enhancer regions indicates that expression changes in these cell types are particularly relevant for the pathogenesis of RA. The specific SNPs that account for this enrichment can be used as a basis for focused genotype-phenotype studies of these cell types

    Temporal dynamics of mirror-symmetry perception

    Get PDF
    Recent studies have suggested that temporal dynamics rather than symmetrical motion-direction contribute to mirror-symmetry perception. Here we investigate temporal aspects of symmetry perception and implicitly, its temporal flexibility and limitations, by examining how symmetrical pattern elements are combined over time. Stimuli were dynamic dot-patterns consisting of either an on-going alternation of two images (sustained stimulus presentation) or just two images each presented once (transient stimulus presentation) containing different amounts of symmetry about the vertical axis. We varied the presentation duration of the two images under five temporal-arrangement conditions: (1)‘whole patterns’ in which a symmetric pattern alternated with a noise pattern; (2)‘delayed halves’ – the halves of the symmetric and noise patterns were presented with temporal delay; (3)‘matched-pairs’ – two alternating images each containing equal amounts of symmetrical matched-pairs; (4)‘delayed matched-pairs’ – the same as arrangement 3, but with matched-pairs presented with delay; (5)‘static’ – both images presented simultaneously as one. We found increased sensitivity in sustained compared to transient stimulus presentations and with synchronous compared to delayed matched-pairs stimuli. For the delayed conditions, sensitivity decreased gradually with longer image durations (>60ms), prominently for the transient stimulus presentations. We conclude that correlations across-the-symmetry-midline can be integrated over time (~120ms) and symmetry mechanisms can tolerate temporal delays between symmetric dot-pairs of up to ~60ms

    Rainforest conservation as a strategy of climate policy

    Get PDF
    Tropical forest conservation in developing countries has repeatedly been highlighted as a new element in international climate policy. However, no clear ideas yet exist as to what shape such a conservation strategy might take. In the present paper, we would like to make some observations to this end. It is shown how projects in order to reduce CO2-emissions resulting from deforestation and degradation (REDD) can be integrated into a system of tradable emission rights in an industrialised country and which requirements ought to be fulfilled. Instruments are emission credits and emission allowances. Driving actors interested in emission rights through forest projects may be private investors or the rainforest state itself. The efficiency of the system depends on a great extent on a binding reference path for the tolerable emissions from deforestation, which has been agreed upon and adhered to by the rainforest country by means of a forest law aimed at limiting deforestation. Our considerations lead us to conclude that the national baseline approach with an appropriate contribution by the rainforest country coupled with a decentralised system with private investors seems the most viable option. Since additional burdens are imposed on the rainforest country to some extent, a compromise could consist of agreeing on a moderate deforestation path, which is harmonised with the benefits from the forest projects. Combining both programmes (offset credits and emission allowances) is particularly attractive because all participants, and especially the industrialised country, benefit from it. The industrialised country can expand its climate conservation programme without any additional costs to a certain degree

    OpenMI: the essential concepts and their implications for legacy software

    No full text
    International audienceInformation & Communication Technology (ICT) tools such as computational models are very helpful in designing river basin management plans (rbmp-s). However, in the scientific world there is consensus that a single integrated modelling system to support e.g. the implementation of the Water Framework Directive cannot be developed and that integrated systems need to be very much tailored to the local situation. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. The HarmonIT project aims at precisely that. Its objective is to develop and implement a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI) standard. The OpenMI standard has been completed and documented. It relies entirely on the "pull" principle, where data are pulled by one model from the previous model in the chain. This paper gives an overview of the OpenMI standard, explains the foremost concepts and the rational behind it

    The Circumstellar Environment of High Mass Protostellar Objects. III Evidence of Infall?

    Full text link
    The results are presented of a molecular line survey to search for the spectral signature of infall towards 77 850 micron continuum sources believed to be candidate high mass protostellar objects. Up to six different transitions, HCO+ 1-0, 3-2 and 4-3, H2CO 2_12-1_11, N2H+ and H13CO+ 3-2, were observed towards each source. Towards the peak of the 850 micron emission, N2H+ was typically strong, with a peak antenna temperature of ~1.5K, with a typical linewidth of ~2km/s. The good agreement between the velocity and velocity width of the N2H+ and H13CO+ emission suggests that both species are tracing similar material in the sources. With respect to the velocity of the N2H+, there is a statistically significant excess of blue asymmetric line profiles in both the HCO+ 1-0 and H2CO transitions. This excess reaches levels similar to that seen towards samples of low mass protostars, and suggests that the material around these high mass sources is infalling. We identify 22 promising candidate infall sources which show at least one blue asymmetric line profile and no red asymmetric profiles. The infall velocity is estimated to be in the range of 0.1 km/s to 1 km/s with an implied mass accretion rate of between 2x10^{-4} Msol/yr and 10^{-3}Msol/yr.Comment: Accepted for publication in Astronomy and Astrophysics. Higher resolution versions of Figures 1 and 2 are available from http://www.jb.man.ac.uk/~gaf/Papers.htm

    Bright single-photon sources in bottom-up tailored nanowires

    Get PDF
    The ability to achieve near-unity light extraction efficiency is necessary for a truly deterministic single photon source. The most promising method to reach such high efficiencies is based on embedding single photon emitters in tapered photonic waveguides defined by top-down etching techniques. However, light extraction efficiencies in current top-down approaches are limited by fabrication imperfections and etching induced defects. The efficiency is further tempered by randomly positioned off-axis quantum emitters. Here, we present perfectly positioned single quantum dots on the axis of a tailored nanowire waveguide using bottom-up growth. In comparison to quantum dots in nanowires without waveguide, we demonstrate a 24-fold enhancement in the single photon flux, corresponding to a light extraction efficiency of 42 %. Such high efficiencies in one-dimensional nanowires are promising to transfer quantum information over large distances between remote stationary qubits using flying qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure
    corecore