For a dielectric solid surrounded by an electrolyte and positioned inside an
externally biased parallel-plate capacitor, we study numerically how the
resulting induced-charge electro-osmotic (ICEO) flow depends on the topology
and shape of the dielectric solid. In particular, we extend existing
conventional electrokinetic models with an artificial design field to describe
the transition from the liquid electrolyte to the solid dielectric. Using this
design field, we have succeeded in applying the method of topology optimization
to find system geometries with non-trivial topologies that maximize the net
induced electro-osmotic flow rate through the electrolytic capacitor in the
direction parallel to the capacitor plates. Once found, the performance of the
topology optimized geometries has been validated by transferring them to
conventional electrokinetic models not relying on the artificial design field.
Our results show the importance of the topology and shape of the dielectric
solid in ICEO systems and point to new designs of ICEO micropumps with
significantly improved performance.Comment: 18 pages, latex IOP-style, 7 eps figure