426 research outputs found

    Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides

    Get PDF
    We develop a self-consistent finite element method to study spontaneous emission at nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode is dominatingly excited by the quantum emitter. With such one dominating mode assumption, the cross section of the plasmonic waveguide can be arbitrary. We apply our numerical method to calculate the coupling of a quantum emitter to a cylindrical nanowire and a rectangular waveguide, and compare the cylindrical nanowire to previous work valid in quasistatic approximation. The fraction of the energy coupled to the plasmonic mode can be calculated exactly, which can be used to determine the single optical plasmon generation efficiency for a quantum emitter. For a gold nanowire we observe agreement with the quasistatic approximation for radii below 20 nm, but for larger radii the total decay rate is up to 10 times larger. For the rectangular waveguide we estimate an optimized value for the spontaneous emission factor \beta of up to 80%.Comment: 12 pages, 8 figure

    The sncRNA Zoo: a repository for circulating small noncoding RNAs in animals

    Get PDF
    The repertoire of small noncoding RNAs (sncRNAs), particularly miRNAs, in animals is considered to be evolutionarily conserved. Studies on sncRNAs are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens. Notably, none of the species under investigation were previously annotated in any miRNA reference database. Sequencing was performed on blood cells as they are amongst the most accessible, stable and abundant sources of the different sncRNA classes. We evaluated and compared the composition and nature of sncRNAs across the different species by computational approaches. While the distribution of sncRNAs in the different RNA classes varied significantly, general evolutionary patterns were maintained. In particular, miRNA sequences and expression were found to be even more conserved than previously assumed. To make the results available for other researchers, all data, including expression profiles at the species and family levels, and different tools for viewing, filtering and searching the data are freely available in the online resource ASRA (Animal sncRNA Atlas) at https://www.ccb.uni-saarland.de/asra/

    Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G

    Get PDF
    OBJECTIVES: Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. METHODS: A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. RESULTS: Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. CONCLUSION: These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis

    An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control genetic studies of complex human diseases can be confounded by population stratification. This issue can be addressed using panels of ancestry informative markers (AIMs) that can provide substantial population substructure information. Previously, we described a panel of 128 SNP AIMs that were designed as a tool for ascertaining the origins of subjects from Europe, Sub-Saharan Africa, Americas, and East Asia.</p> <p>Results</p> <p>In this study, genotypes from Human Genome Diversity Panel populations were used to further evaluate a 93 SNP AIM panel, a subset of the 128 AIMS set, for distinguishing continental origins. Using both model-based and relatively model-independent methods, we here confirm the ability of this AIM set to distinguish diverse population groups that were not previously evaluated. This study included multiple population groups from Oceana, South Asia, East Asia, Sub-Saharan Africa, North and South America, and Europe. In addition, the 93 AIM set provides population substructure information that can, for example, distinguish Arab and Ashkenazi from Northern European population groups and Pygmy from other Sub-Saharan African population groups.</p> <p>Conclusion</p> <p>These data provide additional support for using the 93 AIM set to efficiently identify continental subject groups for genetic studies, to identify study population outliers, and to control for admixture in association studies.</p
    corecore