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ABSTRACT

The repertoire of small noncoding RNAs (sncRNAs),
particularly miRNAs, in animals is considered to be
evolutionarily conserved. Studies on sncRNAs are
often largely based on homology-based information,
relying on genomic sequence similarity and exclud-
ing actual expression data. To obtain information on
sncRNA expression (including miRNAs, snoRNAs,
YRNAs and tRNAs), we performed low-input-volume
next-generation sequencing of 500 pg of RNA from 21
animals at two German zoological gardens. Notably,
none of the species under investigation were previ-
ously annotated in any miRNA reference database.
Sequencing was performed on blood cells as they
are amongst the most accessible, stable and abun-
dant sources of the different sncRNA classes. We
evaluated and compared the composition and nature
of sncRNAs across the different species by computa-
tional approaches. While the distribution of sncRNAs
in the different RNA classes varied significantly, gen-
eral evolutionary patterns were maintained. In partic-
ular, miRNA sequences and expression were found
to be even more conserved than previously assumed.
To make the results available for other researchers,
all data, including expression profiles at the species
and family levels, and different tools for viewing, fil-
tering and searching the data are freely available in

the online resource ASRA (Animal sncRNA Atlas) at
https://www.ccb.uni-saarland.de/asra/.

INTRODUCTION

Since the establishment of the central dogma of molecular
biology by Crick (1), for decades the main role of RNAs was
believed to be either in the transfer of information between
DNA and proteins (mRNAs) or in housekeeping functions
(tRNAs, rRNAs). With the discovery of microRNAs in the
early 1990s (2), research on small noncoding RNAs (sncR-
NAs) and later on long noncoding transcripts (3) gained
traction. Moreover, advances in high-throughput sequenc-
ing technology that allowed the sequencing of millions to
billions of small RNA fragments with reasonable effort and
cost (4) led to a further growth in the field. Via sequencing-
based approaches, the number of identified sncRNAs, es-
pecially of miRNAs, increased markedly in just a few years.
While the reference repository miRBase (5) was established
in the year 2000 with only 222 miRNAs in five species, the
most recent version stores 48 885 miRNAs in 271 species.
miRCarta (6), a database that collects mature miRNAs in-
dependently of the organism, suggests up to 44 347 miRNA
candidates; however, only a fraction of these can be as-
sumed to actually be true miRNAs. Because miRNAs have
been described in a variety of organisms, their assumed con-
servation is frequently used to identify additional miRNAs
in related species by homology- and sequence-based ap-
proaches (7–11), which often exclude expression profiling.
Interestingly, the expression patterns of homologous miR-
NAs also appear to be comparable between organs in dif-
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ferent species, as we successfully showed for human and rat
(12).

One of the most commonly performed types of study
on sncRNAs is biomarker discovery analysis (13–15). Here,
human serum, plasma or blood cells are sequenced, or ex-
pression profiling using microarrays or real-time quantita-
tive reverse transcription PCR (RT-qPCR) is performed.
Blood cells are especially suitable for this as they contain
many hundred to over 1000 human miRNAs (12,16). It
has already been demonstrated that the use of standardized
protocols for collecting and analysing blood-borne miRNA
profiles has huge potential for comparing biomarker pro-
files across different human pathologies (17,18). Because
blood can be obtained in a standardized manner and
miRNA expression patterns are technically very stable, it
is easy to accurately compare expression between different
animal species. In particular, dried blood spots (19) (DBS)
or microsampling devices (20) appear to be well suited as
containers for miRNAs. While such decentralized collec-
tion kits are perfectly suited to collecting samples from dif-
ferent sites, the small amount of RNA that can be puri-
fied presents a challenge for further investigations. Previ-
ously, analyses based on DBS were mostly limited to mi-
croarrays and RT-qPCR, but excluded next-generation se-
quencing (NGS). However, the application of NGS was
mandatory for our study to be able to compare the total
sncRNA repertoires amongst different species. Thus, we de-
veloped a novel low-input-volume NGS protocol to facili-
tate sequencing from capillary microsampling devices start-
ing with only 50 pg of RNA (20).

In the present study, we sequenced blood samples of
21 animals collected at two regional German zoos: in
Saarbrücken and Neunkirchen. A phylogenetic tree of the
animals is presented in Figure 1. The primary data analy-
sis was performed with our tool miRMaster (21). We anal-
ysed and compared the read profiles as well as the distri-
bution and composition of small RNAs across species. In
addition, an online resource for the collected data was im-
plemented and is freely available at: https://www.ccb.uni-
saarland.de/asra/. This resource provides access to all de-
tected sncRNAs, their families and their expression pat-
terns across all species in this study. In summary, the com-
piled dataset and associated online web server constitute a
valuable resource for sncRNA research, either for finding
and validating miRNA candidates because of their conser-
vation, or for general research on evolutionary aspects of
sncRNAs.

MATERIALS AND METHODS

Sample collection

We collected 21 animal samples from regional zoos in
Saarbrücken and Neunkirchen (Germany) comprising 19
different species. In addition, we collected four human sam-
ples as a reference. All blood samples were collected with
the Mitra™ microsampler device (Neoteryx, CA). The sam-
ples were collected from remaining blood samples in the
context of veterinary examinations. No additional examina-
tions were performed with the animals. The study was per-

Figure 1. Circular taxonomy tree based on the species that were sequenced
in our study.

mitted by the regional authority, the State Office for Con-
sumer Protection (Landesamt für Verbraucherschutz). Hu-
man blood samples were collected from volunteers with in-
formed consent. An overview of the samples in this study
with their corresponding taxonomic classification is given
in Table 1. Metadata containing the age, gender, as well as
the health condition for each specimen are available in Sup-
plementary Table S1.

RNA extraction and sequencing

Animal blood was collected onto Mitra™ collection devices
(Neoteryx, CA) and dried at least for 2 h. Small RNAs
were extracted by a modified version of the manufacturer’s
procedure using the miRNeasy Serum/Plasma Kit (Qia-
gen, Hilden, Germany). Size distribution and concentration
were analysed using Agilent Bioanalyzer small RNA chips
(Agilent Technologies, Santa Clara, CA). A total of 500 pg
of sRNA with a size range of ∼15–150 nt was subjected to li-
brary preparation using a ligation-free procedure involving
3’-polyadenylation and template switch-based cDNA syn-
thesis using the CATS sRNA-seq Kit (Diagenode, Liege,
Belgium), omitting any dephosphorylation to enrich 3’-
OH. Library size enrichment was carried out using 1.8 vol
AMPure XP beads (Beckman Coulter, Krefeld, Germany)
to achieve the enrichment of libraries containing RNAs
larger than 15–20 nt (library size >160 bp). Libraries were
multiplex-sequenced in an Illumina HiSeq 2500 platform in
high-output mode with 50 cycles, except for common seal
(1), human (3), pygmy marmoset, radiated tortoise and red-
bellied lemur that were (re)sequenced with 40 cycles. Lynx
(2) was sequenced with 47 cycles.
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Table 1. Overview of the sequenced species ordered by phylogeny, their taxonomic classification, their total generated reads and remaining valid reads
after filtering and trimming, as well as the availability of a genome assembly

Taxid Species Superorder Order Total reads (Mio) Valid reads (Mio) Genome

9568 Mandrillus leucophaeus Euarchontoglires Primates 72.65 52.19 �
9606 Homo sapiens Euarchontoglires Primates 25.45 12.14 �
9606 Homo sapiens Euarchontoglires Primates 15.46 10.02 �
9606 Homo sapiens Euarchontoglires Primates 16.98 9.87 �
9606 Homo sapiens Euarchontoglires Primates 24.50 19.26 �
9493 Callithrix pygmaea Euarchontoglires Primates 38.80 27.76 ✗
34829 Eulemur rubriventer Euarchontoglires Primates 35.50 21.09 ✗
297387 Cavia magna Euarchontoglires Rodentia 36.54 25.38 ✗
273791 Potamochoerus porcus Laurasiatheria Artiodactyla 32.85 24.68 ✗
1088130 Rusa timorensis Laurasiatheria Artiodactyla 37.23 25.41 ✗
9720 Phoca vitulina Laurasiatheria Carnivora 24.57 16.15 ✗
9720 Phoca vitulina Laurasiatheria Carnivora 23.73 14.95 ✗
9651 Nasua nasua Laurasiatheria Carnivora 46.87 34.31 ✗
9627 Vulpes vulpes Laurasiatheria Carnivora 29.23 20.26 �
13124 Lynx Laurasiatheria Carnivora 47.84 22.31 ✗
13124 Lynx Laurasiatheria Carnivora 28.72 17.23 ✗
32536 Acinonyx jubatus Laurasiatheria Carnivora 30.62 20.65 �
9407 Rousettus aegyptiacus Laurasiatheria Chiroptera 33.75 24.99 �
9783 Elephas maximus Afrotheria Proboscidea 97.67 63.16 ✗
9818 Orycteropus afer Afrotheria Tubulidentata 36.68 26.45 �
371907 Bubo scandiacus Neognathae Strigiformes 58.79 38.58 ✗
126836 Strix nebulosa Neognathae Strigiformes 37.81 27.92 ✗
176015 Aratinga solstitialis Neognathae Psittaciformes 43.77 28.29 ✗
9240 Spheniscus humboldti Neognathae Sphenisciformes 72.75 53.41 ✗
66190 Astrochelys radiata Chelonia Testudines 25.24 17.76 ✗

Bioinformatics

Sample preprocessing. All samples were trimmed and
cleaned using miRMaster (21). In detail, we first removed
the template switch motif, i.e. the first three bases of the
reads. Then, we removed the bases resulting from the
polyadenylation process. Therefore, we first checked the
reads for adenine homopolymers with at least 13 bases and
at most one mismatch and, if no match was found, we re-
laxed the requirement for an adenine homopolymer with at
least five bases and no mismatch starting at position 15 of
the read. Finally, we removed sequencing adapter contam-
ination. The quality filtering was performed using default
parameters together with a sliding window of four bases
and a quality threshold of 20. The resulting reads that were
shorter than 17 nt were discarded.

Statistics and visualizations. All statistical tests were com-
puted using the free statistical programming language R
(22) (version 3.4.4). If not specified otherwise, reported
P-values were adjusted for multiple testing using the
Benjamini-Hochberg procedure (23). Cramer’s V was com-
puted using the R package rcompanion (24). Wilcoxon-
rank sum test was applied when the data did not follow
normal distribution according to Shapiro–Wilk test. Plots
were generated using the R packages ggplot2 3.1.0 (25) and
pheatmap 1.0.12.

Sample distance estimation and similarity to NCBI phylo-
genetic tree. We computed Mash sketches for all samples
(using Mash 2.0 (26)) with a k-mer size of 17 and a signature
size of 1000 and used them to estimate the pairwise sample
distances. Reads were subsampled using Seqtk 1.2. We con-
structed a phylogenetic tree using the neighbour-joining ap-
proach (27) implemented in the R-package phangorn (28)

and visualized it using the Interactive Tree of Life (29). The
similarity to the phylogenetic tree provided by NCBI was
computed using the normalized Robinson-Founds distance.
To be able to compare both trees, we collapsed the nodes of
the same species. We determined the significance of the simi-
larity of both trees by creating 100 000 random trees with 20
leaves, labeled by the analysed species and comparing them
with the NCBI tree. We then tested if the resulting distances
were smaller than the computed distance and derived from
this the P-value.

Rfam. We downloaded all Rfam family sequences from
the Rfam FTP server (ftp://ftp.ebi.ac.uk/pub/databases/
Rfam, version 13, accessed on 27/3/2018). Then, we deter-
mined that sequences were related to Metazoa by perform-
ing an SQL query against the Rfam database, and selected
them accordingly. To this end, we used the following SQL
query:
SELECT fr.rfam acc, fr.rfamseq acc,

fr.seq start, fr.seq end, f.type
FROM full region fr, rfamseq rf,

taxonomy tx, family f
WHERE rf.ncbi id = tx.ncbi id
AND f.rfam acc = fr.rfam acc
AND fr.rfamseq acc = rf.rfamseq acc
AND tx.tax string LIKE ’
AND is significant = 1
Next, we mapped all samples against the Metazoa Rfam

sequences using RazerS 3 (30), while requiring at least
95% identity and allowing only forward mappings. We de-
termined the RNA composition based on the RNA class
annotations of each family. If a read mapped to multiple
classes, it was counted in full for each.
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miRNA homology determination. We collected the
miRNA sequences of miRBase v22, miRCarta v1.0 and
MirGeneDB 2.0 via their respective websites (accessed
on 18 July 2018). To determine the expression of each
miRNA, we mapped the samples against the databases
with Bowtie (31) (version 1.1.2), while allowing no
mismatches and disabling mapping against the reverse
complement, using the following command:
bowtie -f -v 0 -a --fullref --norc
-S <reference mirnas idx> <sample.fa>

To ensure that each read corresponds to a real miRNA,
we discarded all reads with lengths different from those of
their mapped miRNA. A miRNA was considered to be ex-
pressed in a species if it was present in at least one of its
samples.

miRNA expression and potential precursor determination.
MiRNAs found in any of the three considered databases
were first clustered according to 90% sequence similarity
using vsearch 2.7.1 (32), thereby merging potential isoforms
into one cluster. The RPM normalized counts for each clus-
ter were determined by summing up the expression of each
miRNA contained in it. MiRNA arms were determined ac-
cording to their annotation in the databases. Potential pre-
cursors were determined for the miRNAs by considering
all combinations of 5′ and 3′ miRNAs of precursors of the
same precursor family for MirGeneDB, with the same base
name for miRBase and according to the exact annotations
in miRCarta. MiRNAs that could not be assigned unam-
biguously to one arm were discarded. Using the thereby ob-
tained potential precursors, we could then compute arm ra-
tio differences to investigate arm switches.

MiRNA candidate prediction. MiRNA candidates were
predicted using mirnovo (33) (downloaded on 20 July 2018)
with the default parameters, except for the brown-nosed
coati, for which we had to increase the required minimum
number of isoform variants from 1 to 3 because the pro-
gram was not terminating with lower numbers. Predicted
miRNAs were filtered in a first step by only keeping those
that did not map with at least 90% identity to any known
miRNA. The mapping was performed with RazerS 3 (ver-
sion 3.5.8). Subsequently, we built a scoring scheme similar
to our tool novoMiRank (34). In a first step, we determined
the values of the features used by mirnovo for known miR-
NAs in our dataset. To this end, we restricted the known
miRNAs to those contained in the high-confidence set of
miRBase v22, as we recently showed that this subset con-
tains by far the largest fraction of true miRNAs (35). The
features of mirnovo do depend not only on the miRNAs
but also on the samples. It is thus possible that some miR-
NAs that are more expressed than others bias the feature
distribution. To avoid this bias, we took the mean feature
values for every miRNA. We then normalized all features
to a mean of zero and a variance of once, since they were
all on different scales and computed z-scores for all known
miRNAs. To avoid too large influences of single features, we
restricted the absolute values to 3. We then computed for
every predicted miRNA its distance to the distribution of
known miRNAs, for every feature, and reported the mean
z-score. As filtering threshold we chose the 80th percentile

of the z-scores of known miRNAs, corresponding to 0.8
standard deviations above or below the mean of the known
miRNAs.

ASRA. In the web resource, we provide a species speci-
ficity index (SSI) for miRNAs and for Rfam families that
describe the variability of their expression patterns. It is
computed analogously to the tissue specificity index used
in our miRNA tissue atlas (12). It allows measurement of
the specificity of expression of an miRNA/Rfam family
over different species. The SSI ranges from 0 to 1, where
values closer to 1 represent molecules expressed in a few
or only one species (species-specific molecules) and values
closer to 0 represent molecules similarly expressed in many
species (well-conserved molecules). To this end, the SSI for
an miRNA/Rfam family j is calculated as follows:

ssi j =
∑N

i=1(1 − xj,i )
N − 1

where N corresponds to the total number of species and
xj, i is the RPM expression of the miRNA/Rfam family j
in species i normalized by the maximal expression in any
species of miRNA/Rfam family j.

RESULTS

Using the Mitra™ system, we collected a total of 21 speci-
mens from two regional zoos, including 19 animal species,
as well as four human samples. The species in this study be-
long to five different superorders and 11 different orders.
The samples were sequenced on an Illumina HiSeq 2500,
yielding a total of 973 994 362 reads. After quality filter-
ing and adapter trimming 654 217 441 reads remained
and were used for downstream analysis. An overview of the
collected samples, their taxonomy and read counts is pre-
sented in Table 1. Due to the fact that for only five of the
sequenced animal species a genome assembly is available to
date, of which all are on scaffold level, no genome mappings
were computed. Also, no miRNAs were annotated in any of
the considered reference databases. All downstream analy-
ses were performed only with the valid reads.

Read profiles resemble phylogenetic descriptors

One of the core hypotheses in this study is that the differ-
ences in read profiles between the species also mirror their
known taxonomic classification. To test this hypothesis, we
conducted a minHash analysis using Mash (26). The top
panel of Figure 2 shows the resulting 2D embedding based
on the computed sample Mash distances for superorders (2
A) and orders (2 B). For the superorders, we observe a clus-
ter pattern matching what one would expect from their tax-
onomy, with the exception of Afrotheria. In the more de-
tailed 2D embedding for orders, we see that samples be-
longing to Primates, Carnivora and Strigiformes cluster to-
gether well. Since the amount of reads for our samples var-
ied greatly we wanted to estimate this influence. Therefore,
we generated embeddings based on 15 times subsampling
of the depth of the smallest sample, for each sample. This
way, we ensure that all samples have the same size, while
still keeping a realistic sequencing depth. The resulting plots
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A B

C

D

Figure 2. 2D embedding including a Voronoi diagram of the pairwise sample Mash distances for superorders (A) and orders (B). Each point in the plot
represents a sample. Taxonomic tree built using the computed Mash distances of the read profiles at the species level (C) in comparison to the taxonomic
tree derived from NCBI (D). The branches are colored according to the superorder of the corresponding species.

(Supplementary Figure S1) show that the sample depth has
only a minor influence on the clustering. To increase the
resolution to the species level, we visualized the computed
Mash distances as a phylogenetic tree, as shown in the lower
panel of Figure 2, in comparison to the phylogenetic tree
from NCBI. The biological replicates for human, common
seal and lynx cluster together, confirming the reproducibil-
ity of the sample collection and sequencing process. For
some species, the clustering in the Mash tree matches very
well with the partitioning in the NCBI taxonomy tree; for
example, the two owls cluster with the Humboldt penguin
and the sun conure, which form a larger cluster with the ra-
diated tortoise. Drill and pygmy marmoset also cluster to-
gether in both trees; however, the human samples do not
cluster with these species as we would expect from the NCBI
phylogenetic tree, which is partly related to the heuristic na-

ture of the neighbour-joining algorithm used to create the
tree. To quantify the resemblance of both trees, we com-
puted the normalized Robinson-Foulds distance between
both trees (D = 0.8) and found that it was significantly lower
than expected by chance (P = 4 × 10−5). While some of
the remaining sample clusters do not fit the known taxon-
omy perfectly, we still see that, based on the distance of read
profiles alone, we can derive evolutionary relationships to a
certain extent.

Distribution of sncRNAs varies across species

To obtain an overview of the distribution and composition
of sncRNAs across species, we mapped their reads to the
sequences from the Rfam database (36) with a threshold of
95% identity. We then evaluated the quality of the mappings
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Figure 3. Overview of reads mapped to the different Rfam classes for all
species in this study. The colors are ordered according to the median map-
ping ratio of each class. Classes with mapped reads <0.05% are summa-
rized in the category ‘Other’.

by inspecting the distribution of their read lengths after
trimming (Supplementary Figure S2) and comparing them
with the distribution of the mappings against every RNA
class of Rfam (Supplementary Figures S3–10). We observe
in all sample peaks at the length of the sequenced reads (mi-
nus 3 nt of the template switch motif), i.e. at 47 nt and for
some that ran with less cycles at 37 nt. In general, we would
expect that for RNA classes that are longer than the read
lengths, and which have no known functional fragments,
mostly untrimmed reads map. This is the case for rRNAs
where we observe mainly untrimmed reads. It holds also for
snRNAs, where only in few species over 15% of the reads
shorter than 30 nt map. Reads mapping to SRP RNAs are
mainly untrimmed reads as well; however, in some species
the length of the mapped reads is nearly evenly distributed.
YRNAs, as well as tRNAs, are either mostly covered by
untrimmed reads or reads in the length of YRNA and
tRNA fragments (around 26 nt and around 32 nt). For reads
mapping to miRNAs, we observe clear mapping patterns
that show peaks at 21–22 nt, with mostly no mapping read
exceed a length of 24 nt. Considering snoRNAs, we ob-
serve mostly mappings of untrimmed reads, except for some
species with peaks around 26 nt. Finally, all other mapping
reads are composed mostly of untrimmed reads or short
reads around 20 nt. The overall results of the mapping dis-
tribution are presented per sample in Supplementary Fig-
ure S11 and summarized per species by taking the average
mapping fraction in Figure 3. As expected, in almost all
species, the most dominant read fraction is represented by
rRNAs. However, the percentages vary substantially across
species: from 7% in lynx to 49.3% in snowy owl, with a me-
dian of 35.2%. In particular, the composition of the RNA
classes in both lynx samples diverge the most from those
in the other species. Here, not only is the rRNA fraction

very small, but also the tRNA fraction (which is in me-
dian the third most abundant class) represents 38.1% of the
sncRNA reads. In most other species, the fraction of tRNAs
is under 10% (median 5.5%). The distribution of miRNAs,
which are the second most abundant RNA class, also varies
amongst the different species, ranging from 0.2% in radiated
tortoise to 16.4% in red river hog. Similar patterns could be
observed for all other RNA classes. Interestingly, the frac-
tion of miRNAs, but also of YRNAs, was highly underrep-
resented in all species of the Neognathae and Chelonia su-
perorder (miRNA mean: 1.1% versus 8.7%, Wilcoxon rank-
sum test P = 5 × 10−6; YRNA mean: 0.27% versus 2.9%,
Wilcoxon rank-sum test P = 4 × 10−4). The differences in
the compositions of RNA classes might also be influenced
by the number of unmapped reads. Human reads are much
better recovered in Rfam than reads of rusa and radiated
tortoise, for example (unmapped: ∼23% versus ∼62%, re-
spectively). We investigated if the mapping rates were as-
sociated with the presence of a genome assembly; however,
no significant association was found (Wilcoxon rank-sum
test (two-sided) P = 0.968). A chi-square test of homogene-
ity showed that all pairwise sample comparisons differ sig-
nificantly (P = 0). Since the P-values are strongly affected
by large read counts, we also computed the effect sizes us-
ing Cramer’s V, see Supplementary Table S2. Thereby, we
found that the values for samples of the same species (me-
dian: 0.16) were significantly smaller (i.e. the class distri-
butions were more similar to each other) than for samples
between different species (median: 0.31, Wilcoxon rank-
sum test (one-sided) P = 9 × 10−6), highlighting that even
though all RNA class distributions were significantly differ-
ent, the heterogeneity between samples of different species
was higher than between samples of the same. To assess
if the observed class distributions of some RNA classes
are related to each other, we computed all pairwise Spear-
man correlation coefficients (Supplementary Figure S12) on
the number of reads mapped to each class. This showed
that miRNA and YRNA levels, as well as snoRNAs and
snRNAs, are significantly and positively correlated to each
other (ρ = 0.72, P = 6 × 10−4 for miRNAs and YRNAs,
and ρ = 0.89, P = 3 × 10−5 for snoRNAs and snRNAs).

Zoo animals express common miRNA families that are more
conserved than previously assumed

We also evaluated the coverage of known miRNA sequences
and miRNA families in the different species. To obtain a
comprehensive overview, we made use of three different
miRNA databases with different scope: miRBase v22 (5),
miRCarta v1.0 (6) and MirGeneDB 2.0 (37). miRBase is the
gold standard resource for miRNAs; miRCarta also collects
many miRNA candidates, of which only a fraction might
be true miRNAs; and MirGeneDB collects miRNA genes
that are manually curated and validated. We mapped the
reads of the different species against the mature miRNA se-
quences of the three different databases, allowing only ex-
act matches, which means that we count only reads that
have exactly the same sequence and length as the sequence
deposited in the corresponding database. Figure 4 sum-
marizes the findings for the three databases separately, as
well as the results overlapping amongst them. As a me-
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Figure 4. Comparison of mapping the reads of the different species against
the three miRNA databases: miRBase, miRCarta and MirGeneDB. The
mapping was performed with perfect matches, allowing no mismatches or
differences in lengths between read and database sequence. The stacked
barplot shows the number of miRNAs found uniquely in the correspond-
ing databases, as well as the different overlaps amongst the databases.

dian, we recovered 847 miRNAs per sample. Because hu-
man is the organism with the most annotated miRNAs,
we recovered the most miRNA sequences in human (n =
1846), followed by Asian elephant (n = 1210) and brown-
nosed coati (n = 1187). At the lower end, the reads of the
radiated tortoise sample recovered only 358 miRNAs. We
could expect the number of recovered miRNAs to be sig-
nificantly higher in species with known genome; however,
this was not the case (Wilcoxon rank-sum test (one-sided)
P = 0.1037). Although a large proportion of the miRNA
sequences overlap with references in the three databases or
in any combination thereof, we still found many unique
hits of the reads, especially for miRNAs from miRBase.
While this is surprising at first glance, it can be explained by
the difference in set-up between miRCarta and miRBase.
In these databases, similar miRNAs are merged into one
representative, but miRBase might contain variants of the
same miRNA sequence with different lengths. Nonetheless,
for assessing which miRNAs actually exist, these sequences
uniquely recovered in the different databases might provide
new insights, because they appear to be expressed in dif-
ferent species in our study. To this end, we analysed the
uniquely recovered sequences in miRBase in more detail.
In total, we discovered 862 unique miRBase sequences, of
which 44 were found in all 20 species in our deep sequencing
approach. Interestingly, most of these have been described
in only three different organisms in miRBase, on average.
Amongst those 44 recovered sequences, there are many rep-
resentatives of well-known families, such as let-7, mir-17,
mir-103, mir-24, mir-181 and mir-92. Our findings indi-
cate that these miRNAs are expressed in substantially more
species than previously assumed and provide new insights
into their conservation. If we look at the unique miRBase

sequences recovered that have the most miRBase organ-
isms’ annotations, but are found in only a few of the species
in our analysis, we might conclude that these are either not
as evolutionarily conserved or predominantly expressed as
isoforms with different sequence lengths, or might even rep-
resent artefacts that have been derived by sequence-based
homology but not by expression analysis. One such example
is the sequence 5′-CUGCCCUGGCCCGAGGGACCGA-
3′, which is only found in one species amongst our sam-
ples, but is annotated in 10 miRBase organisms. However,
if we remove one base at the 3′ end from this, we also find
this sequence in seven further organisms in our study and
in two from miRBase. Essentially, this shows that this se-
quence might be a conserved miRNA, but occurs in at least
two isoforms of different lengths. The uniquely recovered
miRBase sequences, the number of species they cover in our
study and in how many miRBase organisms the sequences
are annotated are shown in Supplementary Table S3.

Some sncRNAs are processed depending on the superorder of
their species

Small noncoding RNAs and especially miRNAs are known
to be expressed differently in organisms depending on vari-
ous factors such as diseases, developmental stages or tissues.
Therefore, we asked if we could find such relationships be-
tween our species as well, and in particular if this would be
related to phylogeny. In a first step, to avoid biases related to
isoforms, we clustered all detected miRNAs with an iden-
tity of at least 90% together and summed their expression
values. Next, we clustered the miRNAs that represented
at least 0.1% of the total miRNA expression in the corre-
sponding species and that were present in at least 5 species
(see Supplementary Figure S13). There, we observed that
the strongest split between the species happened between
those of the superorders of Neognathae and Chelonia in
comparison to the other three. This is in concordance with
our observations made in the previous analyses, as well as
with the phylogenetic tree provided by NCBI. One example
of miRNA expressed nearly exclusively in Neognathae and
Chelonia is miR-2188-5p. This miRNA is expressed with
a median of over 30 000 reads in those species, whereas in
others we found it in at most 328 reads. In opposition, for
example miR-423-3p is mostly expressed in Afrotheria, Eu-
archontoglires and Laurasiatheria (median of over 25 000
reads) but nearly not in Chelonia and Neognathae (at most
467 reads). We also evaluated if either 5′or 3′ miRNAs were
over-represented amongst the evaluated miRNAs; however,
their numbers were very similar (66 5′ miRNAs, 63 3′ miR-
NAs and 48 either undetermined or miRNAs that have been
annotated on 5′ and 3′ positions). The observed differences
led us to the question if there were potential miRNA precur-
sors that indicated arm switches between species of different
superorders. Supplementary Figure S14 shows the fraction
of 5′ minus 3′ miRNA reads (1 being thus precursors exclu-
sively expressing their 5′ miRNA and -1 their 3′ miRNA)
of potential precursors, derived from the known annota-
tions. We see that most precursors express mainly one form
across all species. However, there are some for which there
is no clear form. We decided to investigate those further,
in particular regarding differences at the superorder level
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and found nine potential precursors with large differences
between the Neognathae and Chelonia superorders in con-
trast to the Afrotheria, Euarchontoglires and Laurasiathe-
ria superorders (see Supplementary Figure S15). However,
differential processing seems to be not only limited to miR-
NAs, since we found for example different processing pro-
files for fragments of SNORD14 enriched in most species
at the 5′ end, but showing clear preferences for fragments
at the 3′ end in great gray owl, red fox and sun conure, as
shown in Supplementary Figure S16.

Gender and health condition have limited impact in cross-
species RNA expression

Others and we have shown that expression levels of certain
sncRNAs, in particular miRNAs, are driven by gender or
disease conditions (38–40). Therefore, we evaluated if we
could observe different expression levels of Rfam families
or miRNAs according to the gender or health conditions
(unaffected versus affected) of our sequenced species. We
did not perform a more fine grained comparison by dis-
ease, since the group sizes would have been too small and
some miRNAs, such as miR-144-5p, have been shown to
be deregulated independent of the disease in human (39).
While significantly differing miRNA and Rfam family lev-
els were found according to a two-sided Wilcoxon rank-sum
test (gender specific: RF01412 (P = 0.013), miR-224 (P =
0.026); health condition specific: RF00009 (P = 0.0025),
miR-238|miR-548c|miR-1842 (P = 0.009)), none remained
significant after adjustment for multiple testing. Therefore,
we conclude that the impact of these variables in a cross-
species setup is too small and that differences between the
species dominate the expression levels.

Many miRNA candidates are not covered by known
databases

In addition to known miRNAs from the databases above,
it is likely that there are other small noncoding RNAs that
have not yet been annotated. A mapping-based analysis us-
ing a reference genome usually supports the discovery of
these candidates. Because, for the majority of the animals
included in this study, no reference genome is available, we
applied mirnovo for genome-free miRNA prediction (33).
First, we assessed how many known miRNAs can be re-
covered by a run of this tool. Figure 5A shows a stacked
barplot for the number of recovered miRNAs deposited in
the databases miRBase, miRCarta and MirGeneDB. In this
case, we defined a positive hit if the reads mapped with at
least 90% identity to the miRNA sequence in a database
taking into account mismatches and differences in length.
The prediction algorithm recovers most known miRNAs
for human, followed by lynx, Egyptian fruit bat and com-
mon seal. In contrast to the comparison of the perfect
matches above, we see that the largest fraction of recovered
miRNAs is shared by all three databases for each organism
and that miRCarta entries contribute the largest propor-
tion. Still, the number of recovered miRNAs is moderate
overall; even for human, we recover only 360 miRNAs. As
a median, we recover only 40.5 miRNAs across all samples.
Second, we analysed the results of the mirnovo algorithm

A

B

Figure 5. Prediction of novel miRNAs with the tool mirnovo. (A) Com-
parison of recovered known miRNAs deposited in the three databases:
miRBase, miRCarta and MirGeneDB. For the mapping, we required
at least 90% identity between read and database sequence. The stacked
barplot shows the number of miRNAs found uniquely in the correspond-
ing databases, as well as the different overlaps amongst the databases. (B)
Number of novel miRNAs predicted by mirnovo and filtered by us for the
samples in this study.

by excluding known miRNAs and illustrate the numbers
of novel predictions in Supplementary Figure S17. Here, as
a median, approximately 575 miRNAs per species remain.
The organism yielding the most candidates is sun conure,
with more than 2000 predicted miRNAs, followed by Asian
elephant with 1298. Because the gap between known recov-
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ered miRNAs and novel miRNAs is quite large, it is ques-
tionable how many of the predicted candidates represent
true positive findings. To increase the likelihood of predict-
ing true miRNAs, we applied a score filtering similar to
novoMiRank (34), based on the features of mirnovo. The
obtained scores (see Supplementary Figure S18) highlight
that many predicted miRNAs are very different from the
miRNAs of the high confidence set of miRBase. By filter-
ing the predictions according to their scores, we reduced the
number of predictions by 4-fold in median, as show in Fig-
ure 5B, while the number of recovered miRNAs dropped in
median only by 2-fold (see Supplementary Figure S19). The
results of the filtered mirnovo analysis are available in our
online repository.

ASRA: the online resource

In the previous sections, we provide only a snapshot of the
potential analyses that are possible using the NGS dataset,
excluding many further considerations, such as animal-
specific miRNA arm expression preferences, isoforms and
others. To make our findings and data easily accessible to
others and to promote secondary analyses, we implemented
the online resource ASRA (Animal sncRNA Atlas), avail-
able at https://www.ccb.uni-saarland.de/asra/. ASRA con-
sists of five major modules. First, we provide an overview
of all studied samples and display their read profile simi-
larity in comparison to their phylogenetic annotations, rep-
resented as a 2D embedding plot and a phylogenetic tree.
Second, users can search specific miRNAs or Rfam fami-
lies in the databases considered here (miRBase, miRCarta,
MirGeneDB and Rfam) and display their expression in all
species (for an example, see Supplementary Figure S20).
Thereby, the total read counts or expression normalized as
the reads per million (RPM) can be shown, as well as the ex-
pression of known similar miRNAs (known miRNAs with
90% similarity to the selected one). In addition, a species
specificity index is shown for each entry, which indicates
whether the displayed RNA is preferentially expressed in
few species (values closer to 1) or ubiquitously in all species
(values closer to 0). Third, each organism and considered
database can be browsed separately; for example, for each
organism we provide an overview of the number of reads
and their mapped fraction, as well as their class distribu-
tion. In addition, detailed mapping information, such as
total reads and average RPM, are displayed for the three
analysed miRNA databases, the predicted miRNA candi-
dates, the Rfam RNA families as well as their Gene Ontol-
ogy terms. In particular, for Rfam RNA families, we pro-
vide coverage plots with the average RPM at each position
of the 500 most expressed family members. All tables can
be filtered according to their miRNA/RFAM IDs, their ex-
pression or the number of samples in which the sequence
was found. Because Rfam families are composed of many
sequences, we provide a detailed view for each family and
species, which comprises the fourth usability feature. Users
can then see if the detected parts of the family are common
to many family members or if they are specific to few mem-
bers. Furthermore, we enable the family coverage profiles to
be directly compared amongst different species, which can
highlight differences such as miRNA arm expression pref-

erences (arm switches). Finally, users can search nucleotide
sequences, either exactly or as part of a read, in all samples
of the database and inspect their distribution amongst all
species.

DISCUSSION

High-throughput sequencing in combination with mi-
crosampling devices allows the generation of data from
species for which normal sample collection would be chal-
lenging. In our study, we collected blood from a variety of
different species at German zoos and compared their small
noncoding RNA profiles.

In the first steps of data analysis, quality filtering removed
a considerable number of reads. This is probably due to two
factors: as we used a minimally invasive method for sam-
pling peripheral blood, the amount of RNA was indeed
limited. We consequently chose a library preparation pro-
tocol suitable for low input amounts based on ligation-free
template-switching cDNA generation. To this end, we used
total small RNA fractions from precipitation-free isolation
from dried blood without further size exclusion. As such, a
high number of very small reads (shorter than 17 nt) were
obtained and thus discarded. Next, we used 3′ polyadeny-
lation of small RNAs before reverse transcription, which
then requires the trimming of poly(A) stretches. Here, any
small RNA with a poly(A) region is trimmed, as we cannot
differentiate this from in vitro poly(A). For the unmapped
fraction of reads and also for species for which, to date,
no genome is available, it is unlikely that we sequenced
many RNA degradation products, as we omitted any de-
phosphorylation and therefore enriched the library for 3′-
OH RNAs.

Analysing the similarity of the read profiles by computing
the Mash distances revealed that most of the samples of the
same superorders and orders clustered together. Even at the
species level, we still found two groups (birds and primates)
that clustered in a way that was comparable to the phylo-
genetic taxonomy in NCBI. To the best of our knowledge,
this is the first study showing that k-mer profiles derived
from small RNA reads across many species still maintain
the known evolutionary relationships.

Upon considering the distribution of RNA classes across
species, we could not observe a clear pattern. As expected,
rRNA constituted the dominant fraction in most species,
with some exceptions. The number of reads that could be
mapped to the Rfam classes varied enormously amongst the
species. Human had the best coverage, but is also amongst
the best annotated and most researched organisms. Relat-
ing these distributions to the differing amount of anno-
tations known for many species, it seems reasonable that
RNA classes are distributed heterogeneously. However, this
is certainly also related to the fact that some organisms are
more in the research focus than others. As the other ani-
mals in our study are not model organisms, it is possible that
their unmapped reads belong to RNA families that have not
yet been annotated in Rfam or otherwise present sequenc-
ing artefacts. Astonishingly, we found that the tRNA frac-
tion was incredibly high in both lynx samples. As we found
similar extreme distributions for both samples, this reduces
the likelihood of sequencing or library preparation errors.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/47/9/4431/5425345 by U

niversität des Saarlandes - W
iw

i-Sem
inarbibliothek user on 24 February 2022

https://www.ccb.uni-saarland.de/asra/


4440 Nucleic Acids Research, 2019, Vol. 47, No. 9

Therefore, we hypothesize that this could be related to the
physiological or even pathophysiological condition of the
Lynx that has not been diagnosed so far, especially since
tRNA overexpression has often been associated with vari-
ous cancer types in human (41–43). Interestingly, we found
that miRNAs and YRNA levels were positively correlated,
suggesting that even though their biogenesis pathways are
different (44) they might share, potentially complementary,
functions. We also found that the levels of snoRNAs and
snRNAs correlated positively, which is not surprising, as
they both belong to the upper class of small nuclear RNAs
that guide RNA processing proteins.

The evaluation of the expression of sncRNAs in the con-
text of their phylogeny highlighted that large differences
that can be observed between some superorders, and in par-
ticular between Neognathae and Chelonia in comparison
to the others of this study. We even found examples of po-
tential precursors that showed preferential arm expressions
depending on their superorders. Nevertheless, these findings
are of course limited by the size of groups, and more samples
would be needed for higher confidence. In particular, arm
expression comparisons can be difficult, due to the fact that
precursors containing the same or similar miRNAs do not
necessarily exist in all species. Further evidence, in particu-
lar via genome assemblies, would help to reduce this limita-
tion.

The recovery of deposited miRNA sequences from three
miRNA databases highlighted that miRBase contains the
highest number of unique sequences, but also include nu-
merous redundant variations of sequences belonging to the
same family. We showed that known miRNAs are available
in more species than previously assumed and other ones
might be expressed predominantly as different isoforms.

For the prediction of novel miRNAs from NGS data,
we chose mirnovo (33) because this tool does not require a
reference genome. To obtain an estimate of how well this
prediction works, we counted how many known miRNA
sequences can be recovered with the prediction. Although
we used a very lenient mapping strategy, a median of only
about 40.5 miRNAs were found per organism. In contrast,
the tool predicted more than 10 times as many novel can-
didates per organism. By applying a filtering approach and
thus reducing the predictions by 4-fold, we expect to have
increased the ratio of true positives considerably. Because
we cannot verify these results experimentally, it remains un-
clear how many true positive findings the predictions actu-
ally contain.

While our study describes expression patterns of sncR-
NAs in blood cells for a large collection of animals and
provides fascinating new insights into the distribution and
conservation of sncRNAs, certain limitations of the present
study need to be considered and discussed. First, the sam-
ples were collected during veterinary examinations, includ-
ing routine examinations but also blood collection of ani-
mals with pathologies. These factors might be reflected in
the patterns of sncRNAs, but according to our experience
from human samples, such effects are rather moderate com-
pared with the variations that we observe here. A more im-
portant factor may be variations between representatives of
the same species; we thus aim to obtain more specimens, in
terms of collecting more samples from the same species but

also adding more species. Another limitation stems from the
focus of our study. We focus exclusively on circulating sncR-
NAs in blood cells and thus miss sncRNAs which might
be specific to other cell types. In order to reach a compre-
hensive description of the sncRNAs present in the analysed
species, more tissues and specimens will be needed.

CONCLUSION

The detection, annotation and validation of sncRNAs, es-
pecially miRNAs, is still a growing field. To understand
their function and their potential as biomarkers for dis-
eases, we must first understand how to distinguish actu-
ally expressed and valid miRNAs from false positive find-
ings. Conservation is a widely applied feature for identify-
ing miRNAs in related species. Such analyses are often only
performed via homology- and sequence-based in silico ap-
proaches. With our study, we provide a large collection of
small RNA NGS expression data for species that have not
been analysed before in great detail. We created a compre-
hensive publicly available online resource for researchers in
the field to facilitate the assessment of evolutionarily con-
served small RNA sequences.
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Osorio-Querejeta,I., Sepúlveda,L., De Munain,A.L., Olascoaga,J.
and Otaegui,D. (2016) SncRNA (microRNA & snoRNA) opposite
expression pattern found in multiple sclerosis relapse and remission is
sex dependent. Sci. Rep., 6, 20126.

41. Goodarzi,H., Nguyen,H.C., Zhang,S., Dill,B.D., Molina,H. and
Tavazoie,S.F. (2016) Modulated expression of specific tRNAs drives
gene expression and cancer progression. Cell, 165, 1416–1427.

42. Huang,S.-q., Sun,B., Xiong,Z.-p., Shu,Y., Zhou,H.-h., Zhang,W.,
Xiong,J. and Li,Q. (2018) The dysregulation of tRNAs and tRNA
derivatives in cancer. J. Experiment. Clin. Cancer Res., 37, 101.

43. Zhou,Y., Goodenbour,J.M., Godley,L.A., Wickrema,A. and Pan,T.
(2009) High levels of tRNA abundance and alteration of tRNA
charging by bortezomib in multiple myeloma. Biochem. Biophys. Res.
Commun., 385, 160–164.

44. Nicolas,F.E., Hall,A.E., Csorba,T., Turnbull,C. and Dalmay,T.
(2012) Biogenesis of Y RNA-derived small RNAs is independent of
the microRNA pathway. FEBS Lett., 586, 1226–1230.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/47/9/4431/5425345 by U

niversität des Saarlandes - W
iw

i-Sem
inarbibliothek user on 24 February 2022

https://www.r-project.org
https://www.rcompanion.org
https://www.ggplot2.tidyverse.org
https://www.doi.org/10.1101/258749

