760 research outputs found

    Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle

    Get PDF
    BACKGROUND: Myocardial blood flow (MBF) varies throughout the cardiac cycle in response to phasic changes in myocardial tension. The aim of this study was to determine if quantitative myocardial perfusion imaging with cardiovascular magnetic resonance (CMR) can accurately track physiological variations in MBF throughout the cardiac cycle. METHODS: 30 healthy volunteers underwent a single stress/rest perfusion CMR study with data acquisition at 5 different time points in the cardiac cycle (early-systole, mid-systole, end-systole, early-diastole and end-diastole). MBF was estimated on a per-subject basis by Fermi-constrained deconvolution. Interval variations in MBF between successive time points were expressed as percentage change. Maximal cyclic variation (MCV) was calculated as the percentage difference between maximum and minimum MBF values in a cardiac cycle. RESULTS: At stress, there was significant variation in MBF across the cardiac cycle with successive reductions in MBF from end-diastole to early-, mid- and end-systole, and an increase from early- to end-diastole (end-diastole: 4.50 ± 0.91 vs. early-systole: 4.03 ± 0.76 vs. mid-systole: 3.68 ± 0.67 vs. end-systole 3.31 ± 0.70 vs. early-diastole: 4.11 ± 0.83 ml/g/min; all p values <0.0001). In all cases, the maximum and minimum stress MBF values occurred at end-diastole and end-systole respectively (mean MCV = 26 ± 5%). There was a strong negative correlation between MCV and peak heart rate at stress (r = -0.88, p < 0.001). The largest interval variation in stress MBF occurred between end-systole and early-diastole (24 ± 9% increase). At rest, there was no significant cyclic variation in MBF (end-diastole: 1.24 ± 0.19 vs. early-systole: 1.28 ± 0.17 vs.mid-systole: 1.28 ± 0.17 vs. end-systole: 1.27 ± 0.19 vs. early-diastole: 1.29 ± 0.19 ml/g/min; p = 0.71). CONCLUSION: Quantitative perfusion CMR can be used to non-invasively assess cyclic variations in MBF throughout the cardiac cycle. In this study, estimates of stress MBF followed the expected physiological trend, peaking at end-diastole and falling steadily through to end-systole. This technique may be useful in future pathophysiological studies of coronary blood flow and microvascular function

    Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole

    Get PDF
    BACKGROUND: Two-dimensional (2D) perfusion cardiovascular magnetic resonance (CMR) remains limited by a lack of complete myocardial coverage. Three-dimensional (3D) perfusion CMR addresses this limitation and has recently been shown to be clinically feasible. However, the feasibility and potential clinical utility of quantitative 3D perfusion measurements, as already shown with 2D-perfusion CMR and positron emission tomography, has yet to be evaluated. The influence of systolic or diastolic acquisition on myocardial blood flow (MBF) estimates, diagnostic accuracy and image quality is also unknown for 3D-perfusion CMR. The purpose of this study was to establish the feasibility of quantitative 3D-perfusion CMR for the detection of coronary artery disease (CAD) and to compare systolic and diastolic estimates of MBF. METHODS: Thirty-five patients underwent 3D-perfusion CMR with data acquired at both end-systole and mid-diastole. MBF and myocardial perfusion reserve (MPR) were estimated on a per patient and per territory basis by Fermi-constrained deconvolution. Significant CAD was defined as stenosis ≄70% on quantitative coronary angiography. RESULTS: Twenty patients had significant CAD (involving 38 out of 105 territories). Stress MBF and MPR had a high diagnostic accuracy for the detection of CAD in both systole (area under curve [AUC]: 0.95 and 0.92, respectively) and diastole (AUC: 0.95 and 0.94). There were no significant differences in the AUCs between systole and diastole (p values >0.05). At stress, diastolic MBF estimates were significantly greater than systolic estimates (no CAD: 3.21 ± 0.50 vs. 2.75 ± 0.42 ml/g/min, p 0.05). Image quality was higher in systole than diastole (median score 3 vs. 2, p = 0.002). CONCLUSIONS: Quantitative 3D-perfusion CMR is feasible. Estimates of MBF are significantly different for systole and diastole at stress but diagnostic accuracy to detect CAD is high for both cardiac phases. Better image quality suggests that systolic data acquisition may be preferable

    Comparison of Stress-Rest and Stress-LGE Analysis Strategy in Patients Undergoing Stress Perfusion Cardiovascular Magnetic Resonance

    Get PDF
    BACKGROUND: Stress perfusion cardiovascular magnetic resonance can be performed without rest perfusion for the quantification of ischemia burden. However, the optimal method of analysis is uncertain. METHODS: We identified 666 patients from CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) with complete stress perfusion, rest perfusion, late gadolinium enhancement (LGE), and quantitative coronary angiography data. For each segment of the 16-segment model, perfusion was visually graded during stress and rest imaging, with infarct transmurality assessed from LGE imaging. In the stress-LGE analysis, a segment was defined as ischemic if it had a subendocardial perfusion defect with no infarction. Rest perfusion was not used in this analysis. We compared the diagnostic accuracy of stress-LGE analysis against quantitative coronary angiography and the stress-rest method validated in the original CE-MARC analysis. The diagnostic accuracy of the stress-LGE method was evaluated with different thresholds of infarct transmurality used to define whether an infarcted segment had peri-infarct ischemia. RESULTS: The optimal stress-LGE analysis classified all segments with a stress perfusion defect as ischemic unless they had >75% infarct transmurality (area under the curve, 0.843; sensitivity, 75.6%; specificity, 93.1%; P<0.001). This analysis method has superior diagnostic accuracy to the stress-rest method (area under the curve, 0.834; sensitivity, 73.6%; specificity, 93.1%; P<0.001, P value for difference=0.02). Patients were followed-up for median 6.5 years for major adverse cardiovascular events, with the presence of inducible ischemia by either the stress-LGE or stress-rest analysis being similar and strongly predictive (hazard ratio, 2.65; P<0.001, for both). CONCLUSIONS: In this analysis of CE-MARC, the optimum definition of inducible ischemia was the presence of a stress-induced perfusion defect without transmural infarction. This definition improved the diagnostic accuracy compared with the stress-rest analysis validated in the original study. The absence of ischemia by either analysis strategy conferred a favorable long-term prognosis

    Clinical evaluation of two dark blood methods of late gadolinium quantification of ischemic scar

    Get PDF
    BACKGROUND: Late gadolinium enhancement (LGE) imaging was validated for diagnosis and quantification of myocardial infarction (MI). Despite good contrast between scar and normal myocardium, contrast between blood pool and myocardial scar can be limited. Dark blood LGE sequences attempt to overcome this issue. PURPOSE: To evaluate T1 rho (T1 ρ)-prepared dark blood sequence and compare to blood nulled (BN) phase sensitive inversion recovery (PSIR) and standard myocardium nulled (MN) PSIR for detection and quantification of scar. STUDY TYPE: Prospective. POPULATION: Thirty patients with prior MI. FIELD STRENGTH/SEQUENCE: Patients underwent identical 1.5 T MRI protocols. Following routine LGE imaging, a slice with scar, remote myocardium, and blood pool was selected. PSIR LGE was repeated with inversion time set to MN, to BN, and T1 ρ FIDDLE (flow-independent dark-blood delayed enhancement) in random order. ASSESSMENT: Three observers. Qualitative assessment of confidence scores in scar detection and degree of transmurality. Quantitative assessment of myocardial scar mass (grams), and contrast-to-noise ratio (CNR) measurements between scar, blood pool, and myocardium. STATISTICAL TESTS: Repeated-measures analysis of variance (ANOVA) with Bonferroni correction, coefficient of variation, and the Cohen Îș statistic. RESULTS: CNRscar-blood was significantly increased for both BN (27.1 ± 10.4) and T1 ρ (30.2 ± 15.1) compared with MN (15.3 ± 8.4 P < 0.001 for both sequences). There was no significant difference in CNRscar-myo between BN (55.9 ± 17.3) and MN (51.1 ± 17.8 P = 0.512); both had significantly higher CNRscar-myo compared with the T1 ρ (42.6 ± 16.9 P = 0.007 and P = 0.014, respectively). No significant difference in scar size between LGE methods: MN (2.28 ± 1.58 g) BN (2.16 ± 1.57 g) and T1 ρ (2.29 ± 2.5 g). Confidence scores were significantly higher for BN (3.87 ± 0.346) compared with MN (3.1 ± 0.76 P < 0.001) and T1 ρ (3.20 ± 0.71 P < 0.001). DATA CONCLUSION: PSIR with inversion time (TI) set for blood nulling and the T1 ρ LGE sequence demonstrated significantly higher scar to blood CNR compared with routine MN. PSIR with TI set for blood nulling demonstrated significantly higher reader confidence scores compared with routine MN and T1 ρ LGE, suggesting routine adoption of a BN PSIR approach might be appropriate for LGE imaging. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018

    Postweaning substitution of grazed forage with a high-energy concentrate has variable long-term effects on subcutaneous fat and marbling in genotypes

    Get PDF
    The objective of this study was to quantify the effects and interactions of stage of growth and genotype on commercial carcass traits and intramuscular fat (IMF) content in 5 muscles of Bos taurus steers (n = 165) and to test the hypothesis that substituting pasture with a high-energy concentrate during the immediate postweaning period increases IMF. Cattle of 3 genotypes (Angus, Hereford, and Wagyu × Angus; n = 55/genotype) were selected at weaning from commercial herds, targeting genotypic differences in marbling and subcutaneous fatness. Following weaning, steers were fed for 168 d within 2 different improved, temperate pasture-based nutritional systems: a forage-only system (FS) and forage with high-energy supplemented system (SS), with 2 replicates per system. The supplement was fed at a level of 1% of average BW adjusted every 2 wk to provide an estimated 50% of energy requirements for 168 d from weaning. Pasture on offer in both systems was managed to match the BW of the FS and SS steers during the postweaning treatment period to avoid confounding due to differences in growth rate during this period. Steers were then regrouped into 2 replicates and backgrounded on improved, temperate pasture for 158 d and then grain fed within 1 group for 105 d (short fed) or 259 d (long fed). Groups were slaughtered at commencement (d 0) and end of postweaning nutritional treatments (d 168), end of backgrounding (d 326), and after short (d 431) or long feedlotting (d 585). Serial slaughter stage had an effect on all traits assessed (P < 0.01). The FS steers had more rib fat (P < 0.01) and higher Meat Standards Australia marbling score (P < 0.05) and a tendency (P < 0.10) to have greater eye muscle area than the SS steers throughout the study. Genotypic differences were evident (P < 0.05) for all traits assessed except HCW, dressing percentage, rib fat depth, ossification score, ultimate pH, and IMF in the semitendinosus muscle. The results for marbling and IMF do not support the use of a high-energy feed as a substitute for an equivalent amount of energy from pasture during the immediate postweaning period to enhance development of marbling

    License prices for financially constrained firms

    Get PDF
    It is often alleged that high auction prices inhibit service deployment. We investigate this claim under the extreme case of financially constrained bidders. If demand is just slightly elastic, auctions maximize consumer surplus if consumer surplus is a convex function of quantity (a common assumption), or if consumer surplus is concave and the proportion of expenditure spent on deployment is greater than one over the elasticity of demand. The latter condition appears to be true for most of the large telecom auctions in the US and Europe. Thus, even if high auction prices inhibit service deployment, auctions appear to be optimal from the consumers’ point of view

    Quantifying myocardial blood flow and resistance using 4D-flow cardiac magnetic resonance imaging

    Get PDF
    Background. Ischaemia with nonobstructive coronary arteries is most commonly caused by coronary microvascular dysfunction but remains difcult to diagnose without invasive testing. Myocardial blood fow (MBF) can be quantifed noninvasively on stress perfusion cardiac magnetic resonance (CMR) or positron emission tomography but neither is routinely used in clinical practice due to practical and technical constraints. Quantifcation of coronary sinus (CS) fow may represent a simpler method for CMR MBF quantifcation. 4D fow CMR ofers comprehensive intracardiac and transvalvular fow quantifcation. However, it is feasibility to quantify MBF remains unknown. Methods. Patients with acute myocardial infarction (MI) and healthy volunteers underwent CMR. Te CS contours were traced from the 2-chamber view. A reformatted phase contrast plane was generated through the CS, and fow was quantifed using 4D fow CMR over the cardiac cycle and normalised for myocardial mass. MBF and resistance (MyoR) was determined in ten healthy volunteers, ten patients with myocardial infarction (MI) without microvascular obstruction (MVO), and ten with known MVO. Results. MBF was quantifed in all 30 subjects. MBF was highest in healthy controls (123.8 ± 48.4 mL/min), signifcantly lower in those with MI (85.7 ± 30.5 mL/min), and even lower in those with MI and MVO (67.9 ± 29.2 mL/min/) (P < 0.01 for both diferences). Compared with healthy controls, MyoR was higher in those with MI and even higher in those with MI and MVO (0.79 (±0.35) versus 1.10 (±0.50) versus 1.50 (±0.69), P = 0.02). Conclusions. MBF and MyoR can be quantifed from 4D fow CMR. Resting MBF was reduced in patients with MI and MVO

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Reproducibility of left ventricular blood flow kinetic energy measured by four-dimensional flow CMR

    Get PDF
    Objectives Four-dimensional flow CMR allows for a comprehensive assessment of the blood flow kinetic energy of the ventricles of the heart. In comparison to standard two-dimensional image acquisition, 4D flow CMR is felt to offer superior reproducibility, which is important when repeated examinations may be required. The objective was to evaluate the inter-observer and intra-observer reproducibility of blood flow kinetic energy assessment using 4D flow of the left ventricle in 20 healthy volunteers across two centres in the United Kingdom and the Netherlands. Data description This dataset contains 4D flow CMR blood flow kinetic energy data for 20 healthy volunteers with no known cardiovascular disease. Presented is kinetic energy data for the entire cardiac cycle (global), the systolic and diastolic components, in addition to blood flow kinetic energy for both early and late diastolic filling. This data is available for reuse and would be valuable in supporting other research, such as allowing for larger sample sizes with more statistical power for further analysis of these variables

    The role of emotion, values, and beliefs in the construction of innovative work realities

    Get PDF
    Traditional approaches to requirements elicitation stress systematic and rational analysis and representation of organizational context and system requirements. This paper argues that (1) for an organization, a software system implements a shared vision of a future work reality and that (2) understanding the emotions, feelings, values, beliefs, and interests that drive organizational human action is needed in order to invent the requirements of such a software system. This paper debunks some myths about how organizations transform themselves through the adoption of Information and Communication Technology; describes the concepts of emotion, feeling, value, and belief; and presents some constructionist guidelines for the process of eliciting requirements for a software system that helps an organization to fundamentally change its work patterns.(undefined
    • 

    corecore