566 research outputs found

    21cm Absorption by Compact Hydrogen Disks Around Black Holes in Radio-Loud Nuclei of Galaxies

    Full text link
    The clumpy maser disks observed in some galactic nuclei mark the outskirts of the accretion disk that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser disks is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disk. Here we propose a method for mapping the atomic hydrogen distribution in nuclear disks through its 21cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21cm optical depth may approach unity for high angular-resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from X-ray absorption data, ~10^{23}/cm^2. Spreading the 21cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of ~0.1. Spectroscopic searches for the 21cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous disks which are not masing in our direction. Follow-up imaging of 21cm silhouettes of accelerating clumps within these disks can in turn be used to measure cosmological distances.Comment: 4 page

    Imaging the Ionized Disk of the High-Mass Protostar Orion-I

    Full text link
    We have imaged the enigmatic radio source-I (Orion-I) in the Orion-KL nebula with the VLA at 43 GHz with 34 mas angular resolution. The continuum emission is highly elongated and is consistent with that expected from a nearly edge-on disk. The high brightness and lack of strong molecular lines from Orion-I can be used to argue against emission from dust. Collisional ionization and H-minus free-free opacity, as in Mira variables, require a central star with >10^5 Lsun, which is greater than infrared observations allow. However, if significant local heating associated with accretion occurs, lower total luminosities are possible. Alternatively, photo-ionization from an early B-type star and p+/e- bremsstrahlung can explain our observations, and Orion-I may be an example of ionized accretion disk surrounding a forming massive star. Such accretion disks may not be able to form planets efficiently.Comment: 16 pages, 1 table, 3 figure

    The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    Get PDF
    Observations of H2_2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry (VLBI) images and kinematics of water maser emission in six active galaxies: NGC~1194, NGC~2273, NGC~2960 (Mrk~1419), NGC~4388, NGC~6264 and NGC~6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central 0.3\sim0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 and 60 ×1010M\times 10^{10} M_{\odot}~pc3^{-3}. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive black hole. The seven BHs have masses ranging between 0.76 and 6.5×\times107M^7 M_{\odot}. The BH mass errors are 11\approx11\%, dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with other BH mass measurement techniques. The BH mass based on virial estimation in four galaxies is consistent with the megamaser BH mass given the latest empirical value of f\langle f \rangle, but the virial mass uncertainty is much greater. MCP observations continue and we expect to obtain more maser BH masses in the future.Comment: 18 pages, 4 figures. This paper has been submitted to ApJ. An updated version of this paper will be posted when it gets accepte

    Coexisting conical bipolar and equatorial outflows from a high-mass protostar

    Get PDF
    The BN/KL region in the Orion molecular cloud is an archetype in the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars, but it is difficult to study because of overlying dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars acrete gas from rotating equatorial disks, and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I; we show that within 60 AU (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199

    Water vapour at high redshift: Arecibo monitoring of the megamaser in MG J0414+0534

    Get PDF
    The study of water masers at cosmological distances would allow us to investigate the parsec-scale environment around powerful radio sources, to probe the physical conditions of the molecular gas in the inner parsecs of quasars, and to estimate their nuclear engine masses in the early universe. To derive this information, the nature of the maser source, jet or disk-maser, needs to be assessed through a detailed investigation of the observational characteristics of the line emission. We monitored the maser line in the lensed quasar MGJ0414+0534 at z = 2.64 with the 300-m Arecibo telescope for ~15 months to detect possible additional maser components and to measure a potential velocity drift of the lines. In addition, we follow the maser and continuum emissions to reveal significant variations in their flux density and to determine correlation or time-lag, if any, between them. The main maser line profile is complex and can be resolved into a number of broad features with line widths of 30-160 km/s. A new maser component was tentatively detected in October 2008 that is redshifted by 470 km/s w.r.t the systemic velocity of the quasar. The line width of the main maser feature increased by a factor of two between the Effelsberg and EVLA observations reported by Impellizzeri et al. (2008) and the first epoch of the Arecibo monitoring campaign. After correcting for the lens magnification, we find that the total H2O isotropic luminosity of the maser in MGJ0414+0534 is now ~30,000 Lsun, making this source the most luminous ever discovered.[Abridged]Comment: 8 pages, 6 figures, accepted for publication in A&

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004

    High resolution observations of SiO masers: comparing the spatial distribution at 43 and 86 GHz

    Full text link
    We present sub-milliarcsecond observations of SiO masers in the late-type stars IRC +10011 and Chi Cyg. We have used the NRAO Very Long Baseline Array (VLBA) to map the 43 GHz (v=1, 2 J=1-0) and the 86 GHz (v=1, 2 J=2-1) SiO masers. All the transitions have been imaged except the v=2 J=2-1 in IRC +10011. We report the first VLBI map of the v=1 J=2-1 28SiO maser in IRC +10011 as well as the first VLBA images of SiO masers in an S-type Mira variable, Chi Cyg. In this paper we have focused on the study of the relative spatial distribution of the different observed lines. We have found that in some cases the observational results are not reproduced by the current theoretical pumping models, either radiative or collisional. In particular, for IRC +10011, the v=1 J=1-0 and J=2-1 28SiO lines have different spatial distributions and emitting region sizes, the J=2-1 emission being located in an outer region of the envelope. For Chi Cyg, the distributions also differ, but the sizes of the masing regions are comparable. We suggest that the line overlaps between ro-vibrational transitions of two abundant molecular species, H2O and 28SiO, is a possible explanation for the discrepancies found between the observations and the theoretical predictions. We have introduced this overlapping process in the calculations of the excitation of the SiO molecule. We conclude that the line overlaps can strongly affect the excitation of SiO and may reproduce the unexpected observational results for the two sources studied.Comment: 16 pages, 12 figure

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    Get PDF
    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gravitational field on the light propagation is examined not only in the wave zone but also in cases when light passes through the intermediate and near zones of the source. Explicit analytic expressions for light deflection and integrated time delay (Shapiro effect) are obtained accounting for all possible retardation effects and arbitrary relative locations of the source of gravitational waves, that of light rays, and the observer. It is shown that the ADM and harmonic gauge conditions can both be satisfied simultaneously outside the source of gravitational waves. Their use drastically simplifies the integration of light propagation equations and those for the motion of light source and observer in the field of the source of gravitational waves, leading to the unique interpretation of observable effects. The two limiting cases of small and large values of impact parameter are elaborated in more detail. Explicit expressions for Shapiro effect and deflection angle are obtained in terms of the transverse-traceless part of the space-space components of the metric tensor. We also discuss the relevance of the developed formalism for interpretation of radio interferometric and timing observations, as well as for data processing algorithms for future gravitational wave detectors.Comment: 43 pages, 4 Postscript figures, uses revtex.sty, accepted to Phys. Rev. D, minor corrections in formulae regarding algebraic sign
    corecore