1,352 research outputs found

    Neural correlates of mentalizing-related computations during strategic interactions in humans

    Get PDF
    Competing successfully against an intelligent adversary requires the ability to mentalize an opponent's state of mind to anticipate his/her future behavior. Although much is known about what brain regions are activated during mentalizing, the question of how this function is implemented has received little attention to date. Here we formulated a computational model describing the capacity to mentalize in games. We scanned human subjects with functional MRI while they participated in a simple two-player strategy game and correlated our model against the functional MRI data. Different model components captured activity in distinct parts of the mentalizing network. While medial prefrontal cortex tracked an individual's expectations given the degree of model-predicted influence, posterior superior temporal sulcus was found to correspond to an influence update signal, capturing the difference between expected and actual influence exerted. These results suggest dissociable contributions of different parts of the mentalizing network to the computations underlying higher-order strategizing in humans

    Solving the mu problem with a heavy Higgs boson

    Full text link
    We discuss the generation of the mu-term in a class of supersymmetric models characterized by a low energy effective superpotential containing a term lambda S H_1 H_2 with a large coupling lambda~2. These models generically predict a lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to be compatible with the unification of gauge couplings. Here we discuss a specific example where the superpotential has no dimensionful parameters and we point out the relation between the generated mu-term and the mass of the lightest Higgs boson. We discuss the fine-tuning of the model and we find that the generation of a phenomenologically viable mu-term fits very well with a heavy lightest Higgs boson and a low degree of fine-tuning. We discuss experimental constraints from collider direct searches, precision data, thermal relic dark matter abundance, and WIMP searches finding that the most natural region of the parameter space is still allowed by current experiments. We analyse bounds on the masses of the superpartners coming from Naturalness arguments and discuss the main signatures of the model for the LHC and future WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP plus an addendum on the existence of further extremal points of the potential. 47 pages, 16 figure

    Disaturated-phosphatidylcholine and Surfactant protein-B turnover in human acute lung injury and in control patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with Adult Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover.</p> <p>Objectives</p> <p>To analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls).</p> <p>Methods</p> <p><sup>2</sup>H<sub>2</sub>O as precursor of disaturated-phosphatidylcholine-palmitate and 1<sup>13</sup>C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the <sup>2</sup>H and <sup>13</sup>C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured.</p> <p>Results</p> <p>1) Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2) In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p < 0.01), while the fractional synthesis rate of surfactant protein-B was not different. 3) In ARDS/ALI patients the concentrations of disaturated-phosphatidylcholine and surfactant protein-B in tracheal aspirates were markedly and significantly reduced (17% and 40% of the control values respectively).</p> <p>Conclusions</p> <p>1) Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2) In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.</p

    Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations

    Full text link
    It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets - transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure

    FunClust: a web server for the identification of structural motifs in a set of non-homologous protein structures

    Get PDF
    The occurrence of very similar structural motifs brought about by different parts of non homologous proteins is often indicative of a common function. Indeed, relatively small local structures can mediate binding to a common partner, be it a protein, a nucleic acid, a cofactor or a substrate. While it is relatively easy to identify short amino acid or nucleotide sequence motifs in a given set of proteins or genes, and many methods do exist for this purpose, much more challenging is the identification of common local substructures, especially if they are formed by non consecutive residues in the sequence

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing

    On the interpretation of removable interactions: A survey of the field 33 years after Loftus

    Get PDF
    In a classic 1978 Memory &Cognition article, Geoff Loftus explained why noncrossover interactions are removable. These removable interactions are tied to the scale of measurement for the dependent variable and therefore do not allow unambiguous conclusions about latent psychological processes. In the present article, we present concrete examples of how this insight helps prevent experimental psychologists from drawing incorrect conclusions about the effects of forgetting and aging. In addition, we extend the Loftus classification scheme for interactions to include those on the cusp between removable and nonremovable. Finally, we use various methods (i.e., a study of citation histories, a questionnaire for psychology students and faculty members, an analysis of statistical textbooks, and a review of articles published in the 2008 issue of Psychology andAging) to show that experimental psychologists have remained generally unaware of the concept of removable interactions. We conclude that there is more to interactions in a 2 × 2 design than meets the eye

    Gaze Strategy in the Free Flying Zebra Finch (Taeniopygia guttata)

    Get PDF
    Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight
    corecore