1,977 research outputs found

    In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway.

    Get PDF
    BACKGROUND: Tuberculosis (TB) of the central nervous system (CNS) is characterized by extensive tissue inflammation, driven by molecules that cleave extracellular matrix such as matrix metalloproteinase (MMP)-1 and MMP-3. However, relatively little is known about the regulation of these MMPs in the CNS. METHODS: Using a cellular model of CNS TB, we stimulated a human microglial cell line (CHME3) with conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb). MMP-1 and MMP-3 secretion was detected using ELISAs confirmed with casein zymography or western blotting. Key results of a phospho-array profile that detects a wide range of kinase activity were confirmed with phospho-Western blotting. Chemical inhibition (SB203580) of microglial cells allowed investigation of expression and secretion of MMP-1 and MMP-3. Finally we used promoter reporter assays employing full length and MMP-3 promoter deletion constructs. Student's t-test was used for comparison of continuous variables and multiple intervention experiments were compared by one-way ANOVA with Tukey's correction for multiple pairwise comparisons. RESULTS: CoMTb up-regulated microglial MMP-1 and MMP-3 secretion in a dose- and time-dependent manner. The phospho-array profiling showed that the major increase in kinase activity due to CoMTb stimulation was in p38 mitogen activated protein kinase (MAPK), principally the α and γ subunits. p38 phosphorylation was detected at 15 minutes, with a second peak of activity at 120 minutes. High basal extracellular signal-regulated kinase activity was further increased by CoMTb. Secretion and expression of MMP-1 and MMP-3 were both p38 dependent. CoMTb stimulation of full length and MMP-3 promoter deletion constructs demonstrated up-regulation of activity in the wild type but a suppression site between -2183 and -1612 bp. CONCLUSIONS: Monocyte-microglial network-dependent MMP-1 and MMP-3 gene expression and secretion are dependent upon p38 MAPK in tuberculosis. p38 is therefore a potential target for adjuvant therapy in CNS TB

    Mycobacterium tuberculosis subverts negative regulatory pathways in human macrophages to drive immunopathology.

    Get PDF
    Tuberculosis remains a global pandemic and drives lung matrix destruction to transmit. Whilst pathways driving inflammatory responses in macrophages have been relatively well described, negative regulatory pathways are less well defined. We hypothesised that Mycobacterium tuberculosis (Mtb) specifically targets negative regulatory pathways to augment immunopathology. Inhibition of signalling through the PI3K/AKT/mTORC1 pathway increased matrix metalloproteinase-1 (MMP-1) gene expression and secretion, a collagenase central to TB pathogenesis, and multiple pro-inflammatory cytokines. In patients with confirmed pulmonary TB, PI3Kδ expression was absent within granulomas. Furthermore, Mtb infection suppressed PI3Kδ gene expression in macrophages. Interestingly, inhibition of the MNK pathway, downstream of pro-inflammatory p38 and ERK MAPKs, also increased MMP-1 secretion, whilst suppressing secretion of TH1 cytokines. Cross-talk between the PI3K and MNK pathways was demonstrated at the level of eIF4E phosphorylation. Mtb globally suppressed the MMP-inhibitory pathways in macrophages, reducing levels of mRNAs encoding PI3Kδ, mTORC-1 and MNK-1 via upregulation of miRNAs. Therefore, Mtb disrupts negative regulatory pathways at multiple levels in macrophages to drive a tissue-destructive phenotype that facilitates transmission

    Testing the boundaries of closely related daisy taxa using metabolomic profiling

    Full text link
    Advances in high-throughput, comprehensive small molecule analytical techniques have seen the development of the field of metabolomics. The coupling of mass spectrometry with high-resolution chromatography provides extensive chemical profiles from complex biological extracts. These profiles include thousands of compounds linked to gene expression, and can be used as taxonomic characters. Studies have shown metabolite profiles to be taxon specific in a range of organisms, but few have investigated taxonomically problematic plant taxa. This study used a phenetic analysis of metabolite profiles to test taxonomic boundaries in the Olearia phlogopappa (Asteraceae) complex as delimited by morphological data. Metabolite profiles were generated from both field- and shade house-grown material, using liquid chromatography-mass spectrometry (LC-MS). Aligned profiles of 51 samples from 12 taxa gave a final dataset of over 10,000 features. Multivariate analyses of field and shade house material gave congruent results, both confirming the distinctiveness of the morphologically defined species and subspecies in this complex. Metabolomics has great potential in alpha taxonomy, especially for testing the boundaries of closely related taxa where DNA sequence data has been uninformative

    Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion

    Get PDF
    A female infant of nonconsanguineous Indian parents presented at 4 months with a hypoglycemic convulsion. Further episodes of hypoketotic hypoglycemia were associated with inappropriately elevated plasma insulin concentrations. However, unlike other children with hyperinsulinism, this patient had a persistently elevated blood spot hydroxybutyrylcarnitine concentration when fed, as well as when fasted. Measurement of the activity of L-3-hydroxyacyl-CoA dehydrogenase in cultured skin fibroblasts with acetoacetyl-CoA substrate showed reduced activity. In fibroblast mitochondria, the activity was less than 5% that of controls. Sequencing of the short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) genomic DNA from the fibroblasts showed a homozygous mutation (C773T) changing proline to leucine at amino acid 258. Analysis of blood from the parents showed they were heterozygous for this mutation. Western blot studies showed undetectable levels of immunoreactive SCHAD protein in the child's fibroblasts. Expression studies showed that the P258L enzyme had no catalytic activity. We conclude that C773T is a disease-causing SCHAD mutation. This is the first defect in fatty acid beta -oxidation that has been associated with hyperinsulinism and raises interesting questions about the ways in which changes in fatty acid and ketone body metabolism modulate insulin secretion by the beta cell. The patient's hyperinsulinism was easily controlled with diazoxide and chlorothiazide

    A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393

    Full text link
    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes (MBHs), through accretion and merging. Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages of this gravitational interaction. The final stages, through binary MBHs and final collapse with gravitational wave emission, are consistent with the sub-light-year separation MBHs inferred from optical spectra and light-variability of two quasars. The double active nuclei of few nearby galaxies with disrupted morphology and intense star formation (e.g., NGC 6240 and Mkn 463; ~2,400 and ~12,000 light-years separation respectively) demonstrate the importance of major mergers of equal mass spirals in this evolution, leading to an elliptical galaxy, as in the case of the double radio nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of galaxies with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active MBH pairs, but have hitherto not been seen. Here we report the presence of two active MBHs, separated by ~430 light-years, in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur

    Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?

    Get PDF
    The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests

    Association of sperm-associated antigen 5 and treatment response in patients With estrogen receptor–positive breast cancer

    Get PDF
    Importance: There is no proven test that can guide the optimal treatment, either endocrine therapy or chemotherapy, for estrogen receptor–positive breast cancer. Objective: To investigate the associations of sperm-associated antigen 5 (SPAG5) transcript and SPAG5 protein expressions with treatment response in systemic therapy for estrogen receptor–positive breast cancer. Design, Settings, and Participants: This retrospective cohort study included patients with estrogen receptor–positive breast cancer who received 5 years of adjuvant endocrine therapy with or without neoadjuvant anthracycline-based combination chemotherapy (NACT) derived from 11 cohorts from December 1, 1986, to November 28, 2019. The associations of SPAG5 transcript and SPAG5 protein expression with pathological complete response to NACT were evaluated, as was the association of SPAG5 mRNA expression with response to neoadjuvant endocrine therapy. The associations of distal relapse–free survival with SPAG5 transcript or SPAG5 protein expressions were analyzed. Data were analyzed from September 9, 2015, to November 28, 2019. Main Outcomes and Measures: The primary outcomes were breast cancer–specific survival, distal relapse–free survival, pathological complete response, and clinical response. Outcomes were examined using Kaplan-Meier, multivariable logistic, and Cox regression models. Results: This study included 12 720 women aged 24 to 78 years (mean [SD] age, 58.46 [12.45] years) with estrogen receptor–positive breast cancer, including 1073 women with SPAG5 transcript expression and 361 women with SPAG5 protein expression of locally advanced disease stage IIA through IIIC. Women with SPAG5 transcript and SPAG5 protein expressions achieved higher pathological complete response compared with those without SPAG5 transcript or SPAG5 protein expressions (transcript: odds ratio, 2.45 [95% CI, 1.71-3.51]; P < .001; protein: odds ratio, 7.32 [95% CI, 3.33-16.22]; P < .001). Adding adjuvant anthracycline chemotherapy to adjuvant endocrine therapy for SPAG5 mRNA expression in estrogen receptor–positive breast cancer was associated with prolonged 5-year distal relapse–free survival in patients without lymph node involvement (hazard ratio, 0.34 [95% CI, 0.14-0.87]; P = .03) and patients with lymph node involvement (hazard ratio, 0.35 [95% CI, 0.18-0.68]; P = .002) compared with receiving 5-year endocrine therapy alone. Mean (SD) SPAG5 transcript was found to be downregulated after 2 weeks of neoadjuvant endocrine therapy compared with pretreatment levels in 68 of 92 patients (74%) (0.23 [0.18] vs 0.34 [0.24]; P < .001). Conclusions and Relevance: These findings suggest that SPAG5 transcript and SPAG5 protein expressions could be used to guide the optimal therapies for estrogen receptor–positive breast cancer. Retrospective and prospective clinical trials are warranted

    Not Belonging to one’s Self: Affect on Facebook’s Site Governance page

    Get PDF
    This article makes a contribution to a growing number of works that discuss affect and social media. I use Freudian affect theory to analyse user posts on the public Site Governance Facebook page. Freud’s work may help us to explore the affectivity within the user narratives and I suggest that they are expressions of alienation, dispossession and powerlessness that relate to the users’ relations with Facebook as well as to their internal and wider social relations. The article thus introduces a new angle on studies of negative user experiences that draws on psychoanalysis and critical theory

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore