14 research outputs found

    Climate change, crops and commodity traders : subnational trade analysis highlights differentiated risk exposure

    Get PDF
    The global food system is increasingly interconnected and under pressure to support growing demand. At the same time, crop production is facing new and uncertain impacts from climate change. To date, understanding how downstream supply chain actors, such as commodity traders, are exposed to climate change risks has been difficult due to a lack of high-resolution climate and trade data. However, the recent availability of supply chain data linking subnational production to downstream actors, and gridded projections of crop yield under climate change, allows us to assess individual commodity trader exposure to long-term climate change risk. We apply such an analysis to soy production in Brazil, the world’s largest soy exporter. Whilst uncertainty across crop models’ yield projections means it remains difficult to accurately predict how production across the region will be affected by climate change, we demonstrate that the risk exposure of trading actors differs substantially due to the heterogeneity in their sourcing. Our study offers a first attempt to analyze subnational climate risk to individual trading actors operating across an entire production landscape, leading to more precise risk exposure analysis. With sufficient subnational data, this method can be applied to any crop and country combination, and in the context of wider food security issues, it will be pertinent to apply these methods across other production systems and downstream actors in the food system. Introductio

    A spatially explicit approach to assessing commodity-driven fertilizer use and its impact on biodiversity

    Get PDF
    Global demand for food, including rising consumption of meat and dairy products, is increasing pressure on the environment and natural resources, often in locations distant from points of consumption. To identify and quantify consumer driven impacts and the components of the supply chain where sustainability interventions will be most effective, spatially explicit consumption-linked indicators that encompass environmental risks are required. Large amounts of phosphorus fertilizers are used in Brazilian soybean cultivation, which potentially cause eutrophication and impact freshwater species. We use a sub-national trade model to develop a spatially explicit approach for assessing commodity-driven phosphorus fertilizer use and its potential impact on biodiversity linked to four key consumers. The use of phosphorus for embedded consumption per capita of Brazilian soybean in China, the EU, the UK, and Sweden are estimated at municipal level and combined with metrics that influence losses of phosphorus to create a normalised relative risk index. The relative risk index is presented in geospatial visualisations to explore geographical patterns of risk to freshwater biodiversity and make the link between consumer and producer countries less obscure. The results indicate high phosphorus-linked species risk in municipalities within Mato Grosso, Rio Grande do Sul, Paraná, and Goiás. Sweden and the UK generate the highest relative risk and the geographical patterns of risk differ between the investigated consuming countries, showing that smaller countries can have relatively large impacts at a spatially explicit scale. In the Amazon biome, risk of nutrient losses and biodiversity are relatively high, creating concerns as soybean production is expanding into the area. The results and methodological approach can contribute to understanding of accountability, agency, and increased transparency for the governance of global supply chains, necessary for enabling transformations towards sustainable food systems

    Inequitable gains and losses from conservation in a global biodiversity hotspot

    Get PDF
    A billion rural people live near tropical forests. Urban populations need them for water, energy and timber. Global society benefits from climate regulation and knowledge embodied in tropical biodiversity. Ecosystem service valuations can incentivise conservation, but determining costs and benefits across multiple stakeholders and interacting services is complex and rarely attempted. We report on a 10-year study, unprecedented in detail and scope, to determine the monetary value implications of conserving forests and woodlands in Tanzania’s Eastern Arc Mountains. Across plausible ranges of carbon price, agricultural yield and discount rate, conservation delivers net global benefits (+US8.2Bpresentvalue,20yearcentralestimate).Crucially,however,netoutcomesdivergewidelyacrossstakeholdergroups.Internationalstakeholdersgainmostfromconservation(+US8.2B present value, 20-year central estimate). Crucially, however, net outcomes diverge widely across stakeholder groups. International stakeholders gain most from conservation (+US10.1B), while local-rural communities bear substantial net costs (-US1.9B),withgreaterinequitiesformorebiologicallyimportantforests.OtherTanzanianstakeholdersexperienceconflictingincentives:tourism,drinkingwaterandclimateregulationencourageconservation(+US1.9B), with greater inequities for more biologically important forests. Other Tanzanian stakeholders experience conflicting incentives: tourism, drinking water and climate regulation encourage conservation (+US72M); logging, fuelwood and management costs encourage depletion (-US$148M). Substantial global investment in disaggregating and mitigating local costs (e.g., through boosting smallholder yields) is essential to equitably balance conservation and development objectives

    Climate change, public health, and animal welfare: towards a One Health approach to reducing animal agriculture’s climate footprint

    Get PDF
    Animal agriculture contributes significantly to global greenhouse gas (GHG) emissions—an estimated 12%-20% of total anthropogenic emissions. This has led both governmental and private actors to propose various ways to mitigate those climate impacts. This paper applies a One Health lens to the issue, arguing that the choice of solutions should not only consider the potential to reduce GHG emissions—which is not always a given—but also the implications for public health and animal welfare. With this perspective, we examine the potential public health and animal welfare impacts of three types of strategies that are often proposed: (1) “sustainable intensification” methods, aimed at maintaining or increasing production while limiting emissions and avoiding further land conversion; (2) “species shift” approaches, which focus on changing diets to consume meat from animals produced with lower GHG emissions instead of that of animals associated with higher emissions; and (3) “systemic dietary change” approaches that promote shifts towards whole plant-based foods or novel alternatives to conventional animal products. We discuss how some approaches—particularly those associated with sustainable intensification and species shift—could introduce new and significant risks to public health and animal welfare. Promoting systemic dietary change helps to overcome some of these challenges, but requires careful attention to equity to ensure that vulnerable populations still have access to the nutrients they need. We end with recommendations for a more holistic approach to reducing emissions from farmed animals that can help avoid trade-offs and increase synergies with other societal goals

    Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector

    Get PDF
    Zero deforestation commitments (ZDCs) are voluntary initiatives where companies or countries pledge to eliminate deforestation from their supply chains. These commitments offer much promise for sustainable commodity production, but are undermined by a lack of transparency about their coverage and impacts. Here, using state-of-the-art supply chain data, we introduce an approach to evaluate the impact of ZDCs, linking traders and international markets to commodity-associated deforestation in the sub-national jurisdictions from which they source. We focus on the Brazilian soy sector, where we find that ZDC coverage is increasing, but under-represents the Cerrado biome where most soy-associated deforestation currently takes place. Though soy-associated deforestation declined in the Amazon after the introduction of the Soy Moratorium, we observe no change in the exposure of companies or countries adopting ZDCs to soy-associated deforestation in the Cerrado. We further assess the formulation and implementation of these ZDCs and identify several systematic weaknesses that must be addressed to increase the likelihood that they achieve meaningful reductions in deforestation in future. As the 2020 deadline for several of these commitments approaches, our approach can provide independent monitoring of progress toward the goal of ending commodity-associated deforestation

    Land cover change and carbon emissions over 100 years in an African biodiversity hotspot

    Get PDF
    Agricultural expansion has resulted in both land use and land cover change (LULCC) across the tropics. However, the spatial and temporal patterns of such change and their resulting impacts are poorly understood, particularly for the pre-satellite era. Here we quantify the LULCC history across the 33.9 million ha watershed of Tanzania's Eastern Arc Mountains, using geo-referenced and digitised historical land cover maps (dated 1908, 1923, 1949 and 2000). Our time series from this biodiversity hotspot shows that forest and savanna area both declined, by 74% (2.8 million ha) and 10% (2.9 million ha), respectively, between 1908 and 2000. This vegetation was replaced by a five-fold increase in cropland, from 1.2 million ha to 6.7 million ha. This LULCC implies a committed release of 0.9 Pg C (95% CI: 0.4-1.5) across the watershed for the same period, equivalent to 0.3 Mg C ha(-1) yr(-1) . This is at least three-fold higher than previous estimates from global models for the same study area. We then used the LULCC data from before and after protected area creation, as well as from areas where no protection was established, to analyse the effectiveness of legal protection on land cover change despite the underlying spatial variation in protected areas. We found that, between 1949 and 2000, forest expanded within legally protected areas, resulting in carbon uptake of 4.8 (3.8-5.7) Mg C ha(-1) , compared to a committed loss of 11.9 (7.2-16.6) Mg C ha(-1) within areas lacking such protection. Furthermore, for nine protected areas where LULCC data is available prior to and following establishment, we show that protection reduces deforestation rates by 150% relative to unprotected portions of the watershed. Our results highlight that considerable LULCC occurred prior to the satellite era, thus other data sources are required to better understand long-term land cover trends in the tropics. This article is protected by copyright. All rights reserved

    Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents.

    Get PDF
    BACKGROUND: Overweight and obesity are increasing worldwide. To help assess their relevance to mortality in different populations we conducted individual-participant data meta-analyses of prospective studies of body-mass index (BMI), limiting confounding and reverse causality by restricting analyses to never-smokers and excluding pre-existing disease and the first 5 years of follow-up. METHODS: Of 10 625 411 participants in Asia, Australia and New Zealand, Europe, and North America from 239 prospective studies (median follow-up 13·7 years, IQR 11·4-14·7), 3 951 455 people in 189 studies were never-smokers without chronic diseases at recruitment who survived 5 years, of whom 385 879 died. The primary analyses are of these deaths, and study, age, and sex adjusted hazard ratios (HRs), relative to BMI 22·5-<25·0 kg/m(2). FINDINGS: All-cause mortality was minimal at 20·0-25·0 kg/m(2) (HR 1·00, 95% CI 0·98-1·02 for BMI 20·0-<22·5 kg/m(2); 1·00, 0·99-1·01 for BMI 22·5-<25·0 kg/m(2)), and increased significantly both just below this range (1·13, 1·09-1·17 for BMI 18·5-<20·0 kg/m(2); 1·51, 1·43-1·59 for BMI 15·0-<18·5) and throughout the overweight range (1·07, 1·07-1·08 for BMI 25·0-<27·5 kg/m(2); 1·20, 1·18-1·22 for BMI 27·5-<30·0 kg/m(2)). The HR for obesity grade 1 (BMI 30·0-<35·0 kg/m(2)) was 1·45, 95% CI 1·41-1·48; the HR for obesity grade 2 (35·0-<40·0 kg/m(2)) was 1·94, 1·87-2·01; and the HR for obesity grade 3 (40·0-<60·0 kg/m(2)) was 2·76, 2·60-2·92. For BMI over 25·0 kg/m(2), mortality increased approximately log-linearly with BMI; the HR per 5 kg/m(2) units higher BMI was 1·39 (1·34-1·43) in Europe, 1·29 (1·26-1·32) in North America, 1·39 (1·34-1·44) in east Asia, and 1·31 (1·27-1·35) in Australia and New Zealand. This HR per 5 kg/m(2) units higher BMI (for BMI over 25 kg/m(2)) was greater in younger than older people (1·52, 95% CI 1·47-1·56, for BMI measured at 35-49 years vs 1·21, 1·17-1·25, for BMI measured at 70-89 years; pheterogeneity<0·0001), greater in men than women (1·51, 1·46-1·56, vs 1·30, 1·26-1·33; pheterogeneity<0·0001), but similar in studies with self-reported and measured BMI. INTERPRETATION: The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents. This finding supports strategies to combat the entire spectrum of excess adiposity in many populations. FUNDING: UK Medical Research Council, British Heart Foundation, National Institute for Health Research, US National Institutes of Health.UK MRC, BHF, NIHR; US NIHThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/S0140-6736(16)30175-
    corecore