5,718 research outputs found

    The evaluation of the rate constants for a reversible unimolecular hydrogen transfer reaction that involves a cyclic transition state

    Full text link
    Intermolecular hydrogen transfer free radical reactions are common in the combustion process and in a number of organic chemistry reactions. Therefore, evaluating the pressure and temperature-dependent rate constants of them is of great importance. Basing on microcanonical Rice-Ramsperger-Kassel-Marcus (RRKM) theory, tunnelling correction, and internal rotation correction, we present a simple model that is able to give an estimate of the desired rate constants of a reversible unimolecular reaction. We then extend the simple reversible reaction model to calculate the overall relaxation rate constants of the combustion process of propane

    Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout

    Get PDF
    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior

    Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of palpalis group tsetse in West Africa

    Get PDF
    Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. Methodology/Principal Findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1×1 m2 black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P<0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. Conclusion/Significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa

    How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts

    Get PDF
    Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting .95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the fly’s host-seeking behaviour.Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m2 to 1.0 m2. For both species, increasing the size of a square target from 0.01 m2 (dimensions = 0.1 x 0.1 m) to 1.0 m2 (1.0 x 1.0 m) increased the catch ,4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide x 0.5 m high) caught, 1.8x more tsetse than vertical ones (0.5 m wide x 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 x 0.25 m2. The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT

    Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    Get PDF
    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies

    Loop lessons from Wilson loops in N=4 supersymmetric Yang-Mills theory

    Full text link
    N=4 supersymmetric Yang-Mills theory exhibits a rather surprising duality of Wilson-loop vacuum expectation values and scattering amplitudes. In this paper, we investigate this correspondence at the diagram level. We find that one-loop triangles, one-loop boxes, and two-loop diagonal boxes can be cast as simple one- and two- parametric integrals over a single propagator in configuration space. We observe that the two-loop Wilson-loop "hard-diagram" corresponds to a four-loop hexagon Feynman diagram. Guided by the diagrammatic correspondence of the configuration-space propagator and loop Feynman diagrams, we derive Feynman parameterizations of complicated planar and non-planar Feynman diagrams which simplify their evaluation. For illustration, we compute numerically a four-loop hexagon scalar Feynman diagram.Comment: 20 pages, many figures. Two references added. Published versio

    A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393

    Full text link
    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes (MBHs), through accretion and merging. Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages of this gravitational interaction. The final stages, through binary MBHs and final collapse with gravitational wave emission, are consistent with the sub-light-year separation MBHs inferred from optical spectra and light-variability of two quasars. The double active nuclei of few nearby galaxies with disrupted morphology and intense star formation (e.g., NGC 6240 and Mkn 463; ~2,400 and ~12,000 light-years separation respectively) demonstrate the importance of major mergers of equal mass spirals in this evolution, leading to an elliptical galaxy, as in the case of the double radio nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of galaxies with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active MBH pairs, but have hitherto not been seen. Here we report the presence of two active MBHs, separated by ~430 light-years, in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur

    Centre symmetric 3d effective actions for thermal SU(N) Yang-Mills from strong coupling series

    Full text link
    We derive three-dimensional, Z(N)-symmetric effective actions in terms of Polyakov loops by means of strong coupling expansions, starting from thermal SU(N) Yang-Mills theory in four dimensions on the lattice. An earlier action in the literature, corresponding to the (spatial) strong coupling limit, is thus extended by several higher orders, as well as by additional interaction terms. We provide analytic mappings between the couplings of the effective theory and the parameters Nτ,βN_\tau,\beta of the original thermal lattice theory, which can be systematically improved. We then investigate the deconfinement transition for the cases SU(2) and SU(3) by means of Monte Carlo simulations of the effective theory. Our effective models correctly reproduce second order 3d Ising and first order phase transitions, respectively. Furthermore, we calculate the critical couplings βc(Nτ)\beta_c(N_\tau) and find agreement with results from simulations of the 4d theory at the few percent level for Nτ=4−16N_\tau=4-16.Comment: 27 pages, 21 figures; final version published in JHEP; attached the corresponding Erratum (ref. JHEP 1107:014,2011, DOI 10.1007/JHEP07(2011)014) for ease of consultatio
    • …
    corecore