88,695 research outputs found
Demonstration of the range over which the Langley Research Center digital computer charring ablation program (CHAP) can be used with confidence: Comparisons of CHAP predictions and test data for three ablation materials
Comparisons of ablation calculations with the charring ablation computer code and ablation test data are presented over a wide range of environmental conditions in air for three materials: low-density nylon phenolic, Avcoat 5026-39HC/G, and a filled silicon elastomer. Heat fluxes considered range from over 500 Btu/sq ft-sec to less than 50 Btu/sq ft-sec. Pressures range from 0.5 atm to .004 atm. Enthalpies range from about 2000 Btu/lb to 18000 Btu/lb. Predictions of recession, pyrolysis penetration, and thermocouple responses are considered. Recession predictions for nylon phenolic are good as steady state is approached, but strongly transient cases are underpredicted. Pyrolysis penetrations and thermocouple responses are very well predicted. Recession amounts for Avcoat and silicone elastomer are less well predicted, although high heat flux cases near steady state are fairly satisfactory. Pyrolysis penetrations and thermocouple responses are very well predicted
A Study of Degenerate Four-quark states in SU(2) Lattice Monte Carlo
The energies of four-quark states are calculated for geometries in which the
quarks are situated on the corners of a series of tetrahedra and also for
geometries that correspond to gradually distorting these tetrahedra into a
plane. The interest in tetrahedra arises because they are composed of {\bf
three } degenerate partitions of the four quarks into two two-quark colour
singlets. This is an extension of earlier work showing that geometries with
{\bf two} degenerate partitions (e.g.\ squares) experience a large binding
energy. It is now found that even larger binding energies do not result, but
that for the tetrahedra the ground and first excited states become degenerate
in energy. The calculation is carried out using SU(2) for static quarks in the
quenched approximation with on a lattice. The
results are analysed using the correlation matrix between different euclidean
times and the implications of these results are discussed for a model based on
two-quark potentials.Comment: Original Raw PS file replace by a tarred, compressed and uuencoded PS
fil
Spin fluctuations and superconductivity in powders of Fe_1+xTe_0.7Se_0.3 as a function of interstitial iron concentration
Using neutron inelastic scattering, we investigate the role of interstitial
iron on the low-energy spin fluctuations in powder samples of
Fe_{1+x}Te_{0.7}Se_{0.3}. We demonstrate how combining the principle of
detailed balance along with measurements at several temperatures allows us to
subtract both temperature-independent and phonon backgrounds from S(Q,\omega)
to obtain purely magnetic scattering. For small values of interstitial iron
(x=0.009(3)), the sample is superconducting (T_{c}=14 K) and displays a spin
gap of 7 meV peaked in momentum at wave vector q_{0}=(\pi,\pi) consistent with
single crystal results. On populating the interstitial iron sites, the
superconducting volume fraction decreases and we observe a filling in of the
low-energy magnetic fluctuations and a decrease of the characteristic wave
vector of the magnetic fluctuations. For large concentrations of interstitial
iron (x=0.048(2)) where the superconducting volume fraction is minimal, we
observe the presence of gapless spin fluctuations at a wave vector of
q_{0}=(\pi,0). We estimate the absolute total moment for the various samples
and find that the amount of interstitial iron does not change the total
magnetic spectral weight significantly, but rather has the effect of shifting
the spectral weight in Q and energy. These results show that the
superconducting and magnetic properties can be tuned by doping small amounts of
iron and are suggestive that interstitial iron concentration is also a
controlling dopant in the Fe_{1+x}Te_{1-y}Se_{y} phase diagram in addition to
the Te/Se ratio.Comment: (10 pages, 8 figures, to be published in Phys. Rev. B
Parkes full polarization spectra of OH masers - I. Galactic longitudes 350 through the Galactic Centre to 41
Full polarization measurements of 1665 and 1667-MHz OH masers at sites of
massive star formation have been made with the Parkes 64-m radio telescope.
Here we present the resulting spectra for 104 northerly sources. For more than
20 masers we made new measurements with the ATCA (which also revealed several
hitherto unreported masers), in most cases yielding arcsecond precision to
match the majority of sites. Position improvements assist in distinguishing OH
masers with accompanying methanol masers from those without (thought to be at a
later stage of evolution). There was no existing linear polarization
information at many sites, and spectral resolution was sometimes poor, or
velocity coverage incomplete. These inadequacies are addressed by the present
Parkes spectra. The whole OH maser sample exhibit the well-known predominance
of highly circularly polarized features. We find that linear polarization is
also common, but usually much weaker, and we highlight the rare cases of very
pronounced linear polarization that can extend to 100 per cent. Unusually large
velocity ranges of at least 25 km/s are present at seven sites. Our spectra
measurements for most sources are at two epochs spaced by nearly one year, and
reveal high stability at most sites, and marked variability (more than factors
of two in the strongest feature) at only five sites. The spectra also provide a
valuable reference for longer term variability, with high stability evident
over the past decades at 10 sites and marked variability for four of the
sample. Future systematic monitoring of these variables may uncover further
examples of periodicity, a phenomenon so far recognised in only one source.Comment: 44 pages includes 23 figure
Four-quark flux distribution and binding in lattice SU(2)
The full spatial distribution of the color fields of two and four static
quarks is measured in lattice SU(2) field theory at separations up to 1 fm at
beta=2.4. The four-quark case is equivalent to a qbar q qbar q system in SU(2)
and is relevant to meson-meson interactions. By subtracting two-body flux tubes
from the four-quark distribution we isolate the flux contribution connected
with the four-body binding energy. This contribution is further studied using a
model for the binding energies. Lattice sum rules for two and four quarks are
used to verify the results.Comment: 46 pages including 71 eps figures. 3D color figures are available at
www.physics.helsinki.fi/~ppennane/pics
- …
