465 research outputs found

    Le ragioni delle nostre scelte

    Get PDF
    pp.64-6

    Robust Head Mounted Wearable Eye Tracking System for Dynamical Calibration

    Get PDF
    In this work, a new head mounted eye tracking system is presented. Based on computer vision techniques, the system integrates eye images and head movement, in real time, performing a robust gaze point tracking. Nystagmus movements due to vestibulo-ocular reflex are monitored and integrated. The system proposed here is a strongly improved version of a previous platform called HATCAM, which was robust against changes of illumination conditions. The new version, called HAT-Move, is equipped with accurate inertial motion unit to detect the head movement enabling eye gaze even in dynamical conditions. HAT-Move performance is investigated in a group of healthy subjects in both static and dynamic conditions, i.e. when head is kept still or free to move. Evaluation was performed in terms of amplitude of the angular error between the real coordinates of the fixed points and those computed by the system in two experimental setups, specifically, in laboratory settings and in a 3D virtual reality (VR) scenario. The achieved results showed that HAT-Move is able to achieve eye gaze angular error of about 1 degree along both horizontal and vertical direction

    cvxEDA: a Convex Optimization Approach to Electrodermal Activity Processing

    Get PDF
    This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization. EDA can be considered one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC). The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts. This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization and sparsity. The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation. Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, e.g. in the field of affective computing

    Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates

    Get PDF
    Muscle fatigue is a complex phenomenon that results in a reduction of the maximal voluntary force. Measuring muscle fatigue can be a challenging task that may involve the use of intramuscular electrodes (i.e., intramuscular electromyography (EMG)) or complex acquisition techniques. In this study, we propose an alternative non-invasive methodology for muscle fatigue detection relying on the analysis of two autonomic nervous system (ANS) correlates, i.e., the electrodermal activity (EDA) and heart rate variability (HRV) series. Based on standard surface EMG analysis, we divided 32 healthy subjects performing isometric biceps contraction into two groups: a fatigued group and a non-fatigued group. EDA signals were analyzed using the recently proposed cvxEDA model in order to derive phasic and tonic components and extract effective features to study ANS dynamics. Furthermore, HRV series were processed to derive several features defined in the time and frequency domains able to estimate the cardiovascular autonomic regulation. A statistical comparison between the fatigued and the non-fatigued groups was performed for each ANS feature, and two EDA features, i.e., the tonic variability and the phasic response rate, showed significant differences. Moreover, a pattern recognition procedure was applied to the combined EDA-HRV feature-set to automatically discern between fatigued and non-fatigued subjects. The proposed SVM classifier, following a recursive feature elimination stage, exhibited a maximal balanced accuracy of 83.33%. Our results demonstrate that muscle fatigue could be identified in a non-invasive fashion through effective EDA and HRV processing

    Recognizing emotions induced by affective sounds through heart rate variability

    Get PDF
    This paper reports on how emotional states elicited by affective sounds can be effectively recognized by means of estimates of Autonomic Nervous System (ANS) dynamics. Specifically, emotional states are modeled as a combination of arousal and valence dimensions according to the well-known circumplex model of affect, whereas the ANS dynamics is estimated through standard and nonlinear analysis of Heart rate variability (HRV) exclusively, which is derived from the electrocardiogram (ECG). In addition, Lagged Poincaré Plots of the HRV series were also taken into account. The affective sounds were gathered from the International Affective Digitized Sound System and grouped into four different levels of arousal (intensity) and two levels of valence (unpleasant and pleasant). A group of 27 healthy volunteers were administered with these standardized stimuli while ECG signals were continuously recorded. Then, those HRV features showing significant changes (p < 0.05 from statistical tests) between the arousal and valence dimensions were used as input of an automatic classification system for the recognition of the four classes of arousal and two classes of valence. Experimental results demonstrated that a quadratic discriminant classifier, tested through Leave-One-Subject-Out procedure, was able to achieve a recognition accuracy of 84.72 percent on the valence dimension, and 84.26 percent on the arousal dimension

    Recognizing emotions induced by affective sounds through heart rate variability

    Get PDF

    Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms

    Get PDF
    The evaluation of the seismic vulnerability of existing buildings is becoming very significant nowadays, especially for ancient masonry structures, that represent the cultural and historical heritage of our countries. In this research, the Cathedral of Santa Maria Assunta in Catanzaro (Italy) is analyzed to evaluate its structural response. The main physical properties of the constituent materials were deduced from an extensive diagnostic campaign, while the structural geometry and the construction details were derived from an accurate 3D laser scanner survey. A global dynamic analysis, based on the design response spectrum, is performed on a finite element model for studying the seismic response of the structure. Moreover, a local analysis is conducted to evaluate the safety factors corresponding to potential failure mechanisms along preassigned failure surfaces. Furthermore, pushover analyses are performed on macro-elements, properly extracted from the whole structure and with an independent behavior with regard to seismic actions. A novel model based on inter-element fracture approach is used for the material nonlinearity and its results are compared with a well-known classical damage model in order to point out the capability of the method. Finally, the results obtained with the three different models are compared in terms of seismic vulnerability indicators

    Predicting object-mediated gestures from brain activity: an EEG study on gender differences

    Get PDF
    Recent functional magnetic resonance imaging (fMRI) studies have identified specific neural patterns related to three different categories of movements: intransitive (i.e., meaningful gestures that do not include the use of objects), transitive (i.e., actions involving an object), and tool-mediated (i.e., actions involving a tool to interact with an object). However, fMRI intrinsically limits the exploitation of these results in a real scenario, such as a brain-machine interface (BMI). In this study, we propose a new approach to automatically predict intransitive, transitive, or tool-mediated movements of the upper limb using electroencephalography (EEG) spectra estimated during a motor planning phase. To this end, high-resolution EEG data gathered from 33 healthy subjects were used as input of a three-class k-Nearest Neighbours classifier. Different combinations of EEGderived spatial and frequency information were investigated to find the most accurate feature vector. In addition, we studied gender differences further splitting the dataset into only-male data, and only-female data. A remarkable difference was found between accuracies achieved with male and female data, the latter yielding the best performance (78.55% of accuracy for the prediction of intransitive, transitive and tool-mediated actions). These results potentially suggest that different gender-based models should be employed for future BMI applications

    On prospects and games: an equilibrium analysis under prospect theory

    Get PDF
    The aim of this paper is to introduce prospect theory in a game theoretic framework. We address the complexity of the weighting function by restricting the object of our analysis to a 2-player 2-strategy game, in order to derive some core results. We find that dominant and indifferent strategies are preserved under prospect theory. However, in absence of dominant strategies, equilibrium may not exist depending on parameters. We also discuss a different approach presented by Metzger and Rieger (2009) and give some interesting interpretations of the two approaches

    Assessment of linear and nonlinear/complex heartbeat dynamics in subclinical depression (dysphoria)

    Get PDF
    Objective: Depression is one of the leading causes of disability worldwide. Most previous studies have focused on major depression, and studies on subclinical depression, such as those on so-called dysphoria, have been overlooked. Indeed, dysphoria is associated with a high prevalence of somatic disorders, and a reduction of quality of life and life expectancy. In current clinical practice, dysphoria is assessed using psychometric questionnaires and structured interviews only, without taking into account objective pathophysiological indices. To address this problem, in this study we investigated heartbeat linear and nonlinear dynamics to derive objective autonomic nervous system biomarkers of dysphoria. Approach: Sixty undergraduate students participated in the study: according to clinical evaluation, 24 of them were dysphoric. Extensive group-wise statistics was performed to characterize the pathological and control groups. Moreover, a recursive feature elimination algorithm based on a K-NN classifier was carried out for the automatic recognition of dysphoria at a single-subject level. Main results: The results showed that the most significant group-wise differences referred to increased heartbeat complexity (particularly for fractal dimension, sample entropy and recurrence plot analysis) with regards to the healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics in mood disorders. Furthermore, a balanced accuracy of 79.17% was achieved in automatically distinguishing dysphoric patients from controls, with the most informative power attributed to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability. Significance: This study experimentally supports the assessment of dysphoria as a defined clinical condition with specific characteristics which are different both from healthy, fully euthymic controls and from full-blown major depression
    • …
    corecore