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Abstract.

Depression is ranked as one of the leading causes of disability worldwide. Most

of the previous studies focused on Major Depression, whereas studies on subclinical

depression, such as the so-called dysphoria, have been overlooked. Indeed, dysphoria

is associated with a high-prevalence of developing somatic disorders, and a reduction

of quality of life and life-expectancy. In the current clinical practice, dysphoria

is assessed using psychometric questionnaires and structured interviews exclusively,

therefore without taking into account objective pathophysiological indices. To this

extent, in this study we investigated heartbeat linear and nonlinear dynamics to derive

objective autonomic nervous system biomarkers of dysphoria. Sixty undergraduate

students participated in the study: according to the clinical evaluation, 24 of them

were considered as dysphoric. Extensive group-wise statistics were performed to

characterize the pathological vs. control groups. Moreover, a recursive feature

elimination algorithm based on a K-NN classifier has been carried out for the

automatic recognition of dysphoria at a single-subject level. Results showed that

the most significant group-wise differences refers to increased heartbeat complexity

(particularly for fractal dimension, sample entropy and recurrence plot analysis)

w.r.t. healthy controls, confirming dysfunctional nonlinear sympatho-vagal dynamics

in mood disorders. Furthermore, a balanced accuracy of 79.17% has been achieved in

automatically discerning dysphoria patients from controls, with the most informative

power to nonlinear, spectral and polyspectral quantifiers of cardiovascular variability.

This study experimentally supports the assessment of dysphoria as a defined clinical

condition with specific characteristics which are different both from healthy fully

euthimic controls and from full-blown major depression.
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1. INTRODUCTION

Depression is a commonly occurring, invalidating and recurrent disorder which causes

deterioration of quality of life, somatic morbidity, and mortality [1]. Although

epidemiological data is not available for many countries, current statistics indicate that

depression is widespread throughout the world with a high-variability in prevalence [1,3].

Indeed, the World Health Organization has ranked depression as the 4th leading cause of

disability worldwide [4] and projects that, by 2020, it will be the 2nd [5]. Importantly,

people with depressive disorder have an increased risk of developing severe somatic

diseases, including diabetes and cardiovascular diseases [6, 8–13].

In the current clinical practice, Major Depression is typically diagnosed following

the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria, edited

by the American Psychological Association [14]. Specifically, clinicians ascertain the

presence of depressed mood or anhedonia, along with a minimum additional four out of

nine diagnostic criteria (symptoms), such as irritability, decreased interest or pleasure

in most activities, significant weight change, change in sleep patterns, and fatigue.

Major criticisms of this approach are as follows:

i) clinical decision making: the use of very precise cut-off values to discern clinically

relevant conditions from not relevant ones according to subjective, patient-reported

answer to structured questions. For example, depressive symptoms are commonly

assessed using clinician-administered rating scales and questionnaires, such as Hamilton

Rating Scale for Depression [29] or self-administered rating scales, such as the Beck

Depression Inventory-II (BDI-II) [31]. In the Italian version, a BDI-II score of 12

has been reported as the optimal threshold to discern individuals with and without

clinically significant depressive symptoms [31] and to be predictive of a diagnosis of

Major Depression with the Structured Clinical Interview from DSM [32].

ii) minimum number of symptoms: in case of Depression, patients cannot be diagnosed

if they report less than five symptoms, despite the clinical severity of each symptom

perse.

iii) clinical heterogeneity: depression is a heterogeneous disorder with more than 100

different combination of symptoms fulfilling the DSM criteria [15]. Routine clinical

evaluation, based on subjective retrospective recollection of mood symptoms during

the previous two weeks, may be biased by a well-known memory distortions present

in depressed patients. They, in fact, tend to rehearse negative memories better than

positive ones, leading to an overestimation of the length and severity of their symptoms

[18].

iv) low degree of diagnostic consensus: there is a very low-degree of diagnostic consensus

in DSM-5 diagnosis. The k agreement on depression diagnosis with DSM-5 criteria, in

fact, is very low (0.2 in the field tests performed in US and Canada) [16].

As reported in several epidemiological studies, the above-mentioned limitations are

emphasized in case of depressive mood alterations that do not completely fulfil the

DSM-5 criteria for Major Depression. Exemplarily, the so-called dysphoria or Minor
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Depression shows similar risks for somatic disorders and similar reduction of quality

of life and life expectation than major depression [19–22]. Clinically, dysphoria has

been defined as the presence of at least two, but not more than four, symptoms of

Depression listed in the DSM-5 [23–28]. In this view, dysphoric patients have a clinical

severity that may be comparable to patients with Major Depression but with a narrowed

symptomatology spectrum.

It is evident that diagnosis of mental disorders seriously lacks of objective psycho-

physiological measurements, and/or biochemical markers to be taken into account.

Major research attempts indeed tried to overcome this limitation. Focusing on the

assessment of Autonomic Nervous System (ANS) activity on cardiovascular control,

previous research efforts have shown a strong link between ANS dysfunctions and

depressive symptoms [33–37]. Of note, many ANS activity indices are quantified through

linear and nonlinear analysis of heart rate variability (HRV) series, resulting from the

dynamical balancing of the sympathetic and parasympathetic branches.

Studies on HRV series have associated depressive symptoms with reduced

parasympathetic activity with respect to healthy conditions [17, 38–40], as estimated

through frequency-domain estimates within the high-frequency (HF) band (0.15-0.4

Hz). Significant results have been achieved considering that combined sympathetic

and vagal stimulation on heart rate is not simply additive [2], due to interplay with

numerous other physiological subsystems (e.g., endocrine, neural, and respiratory),

as well as multiple self-regulating, adaptive biochemical processes. To this extent,

HRV measures derived from the theory of nonlinear system dynamics have been

successfully employed to increase the specificity of HRV-based decision support for

depression [38,41–45]. Specifically, heartbeat complexity changes have been investigated

using entropy measures, high order spectra, recurrence plots and Poincaré geometry

[46–48, 52]. Nevertheless, none of these approaches has been profitably used for the

assessment of dysphoria, therefore objective ANS markers of such minor depressive

symptoms are still unknown.

To overcome this limitation, in this study we aim to exploit measures of heartbeat

linear and nonlinear dynamics for the assessment of dysphoria in young adults.

Specifically, besides classical group-wise statistical analysis to identify the most effective

HRV measures discerning dysphoric and non-dysphoric subjects, to increase the

specificity our approach and push onto a direct clinical application, we propose the use of

k-Nearest Neighbour (K-NN) algorithms to automatically identify dysphoric subjects

at a single-subject level. Importantly, we have limited our research to adult females

to avoid possible confounding factors due to gender. In fact, the higher prevalence of

major depression in females than males has been consistently reported in the general

adult population [53–58], confirming the strong gender effect on the spread of depressive

symptoms.

Methodological details, avoiding the description of all the well-known and widely-

reported HRV metrics, as well as experimental results, and Conclusion and Discussions

follow below.
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2. METHODS

2.1. Subject Recruitment and Acquisition set-up

The present study was carried out with the adequate understanding and written consent

of the participants in accordance with the Declaration of Helsinki. The study was

approved by the Ethics Committee of the Department of General Psychology, University

of Padua (Italy).

Sixty volunteers (average age of 21.89 ± 2.06) were enrolled in this study. All

subjects were female undergraduate students from the University of Padua. To ensure

the validity of this study, none of the participants were taking antidepressants or

medications known to affect the ANS functioning or have had a history of neurological

or cardiovascular diseases or alcohol use disorders. In addition, participants were asked

to avoid drinking coffee for at least 2h before the experiment starts.

The experimental protocol comprised a 5-min continuous electrocardiogram (ECG)

recording in resting state, according to the current clinical evaluation in cardiology.

Each volunteer was asked to comfortably seat on an armchair in a sound-attenuated,

dimly-lit room. The ECG was recorded using Ag/AgCl surface electrodes positioned

on the participant’s chest in a modified lead II configuration. The ECG signal was

amplified with a gain of 150, digitized at 500 Hz (16 bit A/D converter; resolution

0.559 µV/LSB), and stored on to a Pentium IV computer. In order to avoid movement

artifacts, participants were instructed to stay still and not to talk throughout the ECG

recordings.

Before the ECG acquisition, psychometric tests were administered. Each subject

filled out the following tests:

• the BDI-II questionnaire [30,31] to assess possible depressive symptoms. This test is

a reliable and valid self-report questionnaire that evaluates the severity of symptoms

of depression over the past 2 weeks. Answers are given on a four-point (0-3) Likert

scale and scores range from 0 to 63, with higher scores indicating more severe

depressive symptoms. As mentioned before, in the Italian version, a score over 12

detects individuals with problems of depression in the Italian population [31].

• The State and Trait Anxiety Inventory (STAI) test, consisted of two questionnaires

(STAI-Y1 for state anxiety and STAI-Y2 for trait anxiety), both consisting of 20

multiple-choice items [61]. This test is based on the conceptual distinction between

“state” and “trait” anxiety this test makes possible to distinguish between anxiety

as a transitory state and anxiety as a relatively stable personality trait.

• The Emotion Regulation Questionnaire (ERQ) [62] consisted of a 10-item scale

designed to measure subjects’ tendency to regulate their emotions in two ways:

cognitive Reappraisal and expressive Suppression. Participants answer each item

on a 7-point Likert-type scale ranging from 1 (strongly disagree) to 7 (strongly

agree).

In addition, subjects who exceeded the BDI-II cut-off of 12 were administered the
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mood episode module (module A) of the SCID-I [32] by a trained psychologist, in order

to confirm the presence of dysphoria and to exclude those participants who met the

diagnostic criteria for major depression, dysthymia or mood disorders.

After filling out the psychometric tests, the participants answered to an ad-hoc

interview that provided information on their age, health status, smoking habits, and

regular alcohol use.

The enrolled subjects were identified within a group of 224 undergraduate students

from the University of Padua that completed an online version of the BDI-II. Only

subjects who achieved a BDI-II score equal to or less than 8 or equal to or greater

than 12 were enrolled in the experiment. More specifically, individuals who scored

at least 12 on the BDI-II test and had two to four depressive symptoms for at least

two weeks, were assigned to the dysphoric group. Conversely, undergraduates who

scored equal to or less than 8 (corresponding to the 53th percentile) on the BDI-II, and

showed no depressive symptoms as defined by the SCID-I were identified as healthy

controls. According to the BDI-II scores, the volunteers were grouped as dysphoric and

non-dysphoric subjects. The dysphoric group comprised 24 participants, whereas the

non-dysphoric group comprised 36 students. Characteristics of both groups are shown

in Table 1.

2.2. Heart Rate Variability Linear and Nonlinear Measures

To derive HRV series, ECG signals were band-pass filtered (0.05-40 Hz) to reduce noise

and motion artifacts.

The R-peaks were detected using the Pan-Tompkins algorithm [63]. In order to

correct possible physiological (e.g., ectopic beats) or algorithmic (e.g., R-peak mis-

detection) artefact in the RR time series, a recently proposed real-time R-R interval

error detection and correction algorithm based on point-process statistics (prediction

log-likelihood) was applied [64]. In addition all the segments were visually inspected.

Standard HRV metrics aims at quantifying cardiovascular linear dynamics through

time and frequency domain estimates [65]. More specifically, within a given time

Table 1. Participant characteristics represented by their Median value (25th, 75th,

percentile) of each group.

Variables Whole group Controls (36) Dysphoric (24)

Age (years) 22 (20, 24) 22 (20, 24) 21 (20, 22.5)

Education (years) 16 (14, 17) 16 (15, 17) 15 (14, 17)

STAI-Y1 33 ( 30, 36) 31.5 ( 29.5, 34.5) 34 (32, 40)

STAI-Y2 39.5 (33.5, 52) 35 (31, 39) 52.5 (49, 61.5)

BDI-II 7 (2, 13.5) 2.5 ( 1, 5.5) 14 ,(12.5, 20.5)

ERQ Reappraisal 31 (25.5, 33.5) 31 ( 29, 35) 29.5 (23, 32.5)

ERQ Suppression 13 (8.5, 17) 12 (7.5, 15.5) 14.5 (11, 17)
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window, we calculated the mean value (µRR) and the standard deviation (σRR) of the RR

intervals, along with the square root of the mean squared differences between successive

RR intervals (RMSSD). In the frequency domain, the HRV spectra were calculated

using Welch’s periodogram method with 50% data overlap. A Blackman window (256s)

was applied to each segment and the fast Fourier transform was calculated for each

windowed segment. Finally, the power spectra of the segments were averaged. To this

aim, the non-evenly sampled RR interval series were interpolated by means of a cubic

spline functions. We then calculated the power within the three main spectral bands:

Very Low Frequency band (VLF, below 0.04Hz), Low Frequency band (LF, from 0.04Hz

to 0.15Hz), and High Frequency band (HF, from 0.15Hz to 0.4Hz). In addition, the ratio

between the LF and the HF power was computed.

In addition, HRV nonlinear/complexity measures were derived using well-

known procedures such as detrended fluctuation analysis (DFA α1), sample entropy

(SampEn), fractal dimension (FracDim), Lagged Poincaré Plot (LPP), and Recurrence

Quantification Analysis (RQA) [65]. DFA investigates the statistical self-affinity and

correlations over HRV series, more specifically we evaluated the short-term fluctuations

characterized by the slope α1 (obtained using RR segments of length 16). The SampEn

quantifies the time series regularity and predictability (we adopetd a tolerance parameter

of 0.2). FracDim evaluates the fractal characteristics of cardiovascular variability (we

applied the method reported in [69]). RQA refers to the study of the Recurrence

Plot, providing measures as the Recurrence Rate (RecurrRate), i.e., the percentage

of recurrence points in an RP, and the Determinism (DET), which is the percentage

of recurrence points which form diagonal lines. Of note, to build the RP matrix, we

used the canonical threshold distance of
√
m · σRR, where m=10 is the embedding

dimension [48, 49]. LPP quantifies HRV fluctuations through two standard deviation,

SD1 and SD2, and their ratio (SD12), of a M-lag scatter-plot of RR intervals. In

addition, we computed the SDRR index, i.e, an approximate relation indicating the

variance of the whole HRV series (see [50] for details).

Finally, Higher-Order Spectra (HOS) [65] parameters were also computed. HOS of HRV

series refer to Bispectal analysis, i.e., the two dimensional Fourier Transform of the third

order cumulant [65], deriving the Phase Entropy (PhaseEntr) and the mean magnitude

(MeanMagnitude) of the bispectrum, as well as nonlinear sympatho-vagal interactions

obtained by integrating the Bispectral plane in the appropriate frequency bands: LL

(f1 : (0 − 0.15]Hz, f2 : (0 − 0.15] Hz), LH (f1 : (0 − 0.15]Hz, f2 : (0.15 − 0.4]Hz), HH

(f1 : (0.15− 0.4]Hz, f2 : (0.15− 0.4]Hz).

2.3. Statistical and Correlation Analyses

For each HRV feature, the Shapiro-Wilk test was applied to verify the null-hypothesis

normally-distributed population. In case of non-Gaussian distribution, a non-parametric

Mann-Whitney U test was adopted to statistically compare the two groups. In order to

address the problem of multiple comparisons, we control the false discovery rate (FDR).
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More specifically, we adopted the Bejnamini & Hochberg [51] algorithm which controls

the FDR at a level of 0.05. Additionally, a non-parametric correlation analysis, based

on Spearman coefficient, between each HRV feature and correspondent BDI-II scores

was performed.

2.4. Pattern Classification

A pattern recognition analysis, including feature selection, was carried out

to increase the specificity of the proposed HRV-based approach. In the

machine learning context, feature selection methods can be divided in two

main categories: (i) filter methods, which focus in finding dependences

between features (using e.g., correlation index, information measure,

statistical test, Fisher’s criterion) that affect the accuracy level without

involving the selected learning algorithm; (ii) wrapper methods, which

instead assess subset selection of features according to their usefulness

to a given specific predictor and use this latter as the evaluation function.

Here, we tested and compared two filter approaches based on statistics

and correlation analysis and two wrapper methods applied to K-NN and

SVM learning algorithm. Classification performance for each subset of

selected features is computed following a recursive feature elimination

(RFE) procedure.

2.4.1. K-NN-RFE: We applied a Recursive Features Elimination (RFE) algorithm to

a K-NN classifier, which was validated through a leave one subject out (LOSO) cross-

validation procedure. K-NN is a supervised non-parametric classifier. Given a query

observation x0, and a labeled training-set, it finds the K training points x(r), r = 1, ..., k

closest in (Euclidean) distance to x0, and then classify it according to the most frequent

class among the K-neighbors.

Following the LOSO scheme, K-NN parameter (i.e, number of neighbors) and

feature ranking were automatically tuned (Figure 1).

Particularly, according to the LOSO procedure, we iteratively split the dataset into

a training-set and a test-set. Each training-set was comprised of the observations from

(N − 1) subjects (where N is the total number of participants), and each test-set was

comprised of the observation from the Nth left-out subject. This procedure was iterated

N times. For each of the N iterations the test-set observations were classified by the

RFE-K-NN classifier using the parameter K and the feature ranking estimated within

the training-set. More specifically, HRV features were ranked according to the following

procedure comprised of M steps (note that M is the total number of the features):

1) The first step selected the highest-ranking position. Within the training set, M

classifications were performed using only a single feature. The feature which

achieved the highest accuracy (i.e., highest predictive power, PP) was associated

with the highest-ranking position. Of note, each of the M classifications was
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performed following a nested-LOSO procedure based on a K-NN classifier with the

same approach explained above. More in detail, the training-set was in turn divided

in a nested-training-set, comprised of the observations from (N − 2) subjects, and

a nested-test-set comprised of the observations of the left-out subject among those

(N − 1) of the training set.

2) The second step selected the 2nd-ranking position. Each one of the remaining

(M − 1) features was iteratively added to the first selected feature, generating

(M−1) bi-dimensional feature-sets. For each of the (M−1) iterations, we calculated

the classification accuracy of each new bi-dimensional feature-set following, also

in this case, a nested-LOSO procedure. The feature which, together to the one

selected at the previous step, achieved the highest accuracy (i.e., highest cumulative

predictive power, CPP) was associated with the 2nd-ranking position;
...

Q) The Qth step selected the Qth-ranking position. Likewise step 2, each one of the

remaining (M − (Q− 1)) features was iteratively joined to the (Q− 1) previously

selected feature, generating (M − (Q− 1)) Q-dimensional feature-sets. The feature

which, together to the (Q − 1) previously selected ones, achieved the highest

accuracy (i.e., highest CPP) was associated with the Qth-ranking position;
...

M) The last remaining feature occupied the last ranking-position.

Pre- 
processing HRV	   Feature	  	  

Extrac.on	  
Sta$s$cal	  
Analysis	  

Leave	  One	  Subject	  Out	  Procedure	  

K-NN 
Classification 

Feature-Selection  
Classifier parameter  

optimization 

Sub-Training Set  
of N-2 subjects 

Sub-Test Set: 
j-th subject 

Feature-Set 

Training Set of  
N-1 subjects 

Test Set: 
i-th subject 

ECG signals 

Figure 1. Scheme of the K-NN-RFE classification procedure. ECG signal

is processed in order to estimate the HRV time series and extract several

linear and nonlinear features. The feature-set is used as input of a two-

stage leave-one-subject-out procedure based on a K-NN classifier and a

feature selection algorithm.
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This M -step feature-ranking procedure was in turn repeated increasing at each

repetition the number of neighbors K. The optimal K was the one that achieved the

highest CPP.

This robust method allows an unbiased out-sample error estimate, reducing the risk of

overfitting.

Once that the K parameter and the associated feature ranking were estimated, the

K-NN RFE classified the test-set performing a dimensionality reduction by recursively

pruning the least important feature from current feature-set, according to the ranking.

Result section will show the average accuracy of all RFE stages and results of the most

accurate classification, using an optimal feature set, are shown in terms of confusion

matrix. Values on the diagonal of this 2X2 table represent the percentage of subjects

that were correctly associated as belonging to a specific class (true positives and true

negatives).

2.4.2. SVM-RFE, K-NN-STAT-RFE, SVM-STAT-RFE, K-NN-CORR-RFE, and

SVM-CORR-RFE: To compare with a more standard approach, performances of the

proposed K-NN-RFE algorithm were compared with a standard SVM-RFE algorithm

[71], as well as with two filter-approach alternatives, i.e., STAT-RFE and CORR-RFE.

Specifically, SVM-RFE employed a nu-SVM (nu=0.5) with a radial basis kernel

function with γ = M−1, where M=26 is the number of HRV features (for further details

concerning the RFE criteria see [71]). The STAT-RFE and CORR-RFE. adopted

a recursive feature elimination algorithm applied to both K-NN and SVM

classifiers based on p-value and correlation coefficient. respectively.

The recursive algorithm followed the same approach explained in

section 2.4.1. However, at each iteration of the LOSO scheme, the features

were ranked relying on the statistical comparison between the dysphoric and

nondysphoric groups (K-NN-STAT-RFE and SVM-STAT-RFE) and on

correlation between each feature and the classes (K-NN-CORR-RFE, and

SVM-CORR-RFE). More specifically, the features were ranked according

to the associated p-value (in ascending order).

3. RESULTS

Results from the group-wise statistical analysis between the dysphoric and non-

dysphoric groups are shown in Table 2. Asterisks show the statistical significant

features. Importantly, dysphoric patients showed a significant increase of HRV

complexity as estimated through fractal dimension and sample entropy. Likewise,

features extracted from LPP, excluding SD1, significantly increased in the dysphoric

group. A similar trend was also shown from µRR, σRR, and LF and HF power,

estimating HRV linear dynamics. Two parameters from RQA, i.e., Recurrence Rate

and Determinism, resulted significantly decreased in dysforic subjects with respect to

healthy ones.



Assessment of Heartbeat Dynamics in Dysphoria 10
T
a
b
le

2
.

R
es

u
lt

s
of

th
e

st
at

is
ti

ca
l

co
m

p
a
ri

so
n

b
et

w
ee

n
th

e
d

y
sp

h
o
ri

c
g
ro

u
p

a
n

d
th

e
co

n
tr

o
l

g
ro

u
p

.
A

st
er

is
k
s

re
p

re
se

n
t

th
e

st
a
ti

st
ic

a
ll

y

si
gn

ifi
ca

n
t

fe
at

u
re

s
af

te
r

th
e

F
D

R
ad

ju
st

m
en

t.

F
ea

tu
re

M
ed

ia
n

(2
5t

h
,

75
th

p
rc

)
M

ed
ia

n
(2

5t
h
,

75
th

p
rc

)
p
-v

al
u
e

p
-v

al
u
e

C
on

tr
ol

gr
ou

p
D

y
sp

h
or

ic
gr

ou
p

(F
D

R
ad

ju
st

ed
)

*µ
R
R

[s
ec

]
0.

71
14

(0
.4

37
4,

0.
58

54
)

0.
82

39
(0

.6
37

3,
0.

81
04

)
0.

01
48

0.
03

2

*σ
R
R

[s
ec

]
0.

02
90

(0
.0

17
8,

0.
04

01
)

0.
05

84
(0

.0
44

0,
0.

07
28

)
0.

01
05

0.
02

5

R
M

S
S
D

[s
ec

]
0.

03
12

(0
.0

17
8,

0.
04

46
)

0.
05

12
(0

.0
37

9,
0.

06
44

)
0.

08
96

0.
12

3

*L
F

p
ow

er
[s

ec
2
]

9.
99

e-
05

(6
.4

6e
-0

5,
1.

35
e-

04
)

3.
85

e-
04

(2
.2

8e
-0

4,
5.

42
e-

04
)

0.
01

82
0.

03
4

H
F

p
ow

er
[s

ec
2
]

5.
18

e-
05

(1
.0

4e
-0

4,
7.

61
e-

05
)

3.
31

e-
04

(2
.9

4e
-0

4,
4.

59
e-

04
)

0.
03

15
0.

05
1

L
F

/H
F

p
ow

er
0.

76
03

(0
.4

03
9,

1.
11

66
)

0.
97

26
(0

.6
90

0,
1.

25
52

)
0.

17
69

0.
22

5

*S
am

p
le

E
n
tr

op
y

(S
am

p
E

n
)

0.
99

66
(0

.8
43

2,
1.

15
01

)
1.

56
37

(1
.3

97
6,

1.
72

99
)

0.
00

33
0.

02
1

*F
ra

ct
al

D
im

en
si

on
(F

ra
cD

im
)

1.
30

95
(1

.2
50

1,
1.

36
89

)
1.

44
11

(1
.3

88
7,

1.
49

35
)

0.
00

04
0.

01
0

D
F
A

(α
1
)

0.
79

57
(0

.7
32

8,
0.

85
86

)
0.

83
54

(0
.7

44
2,

0.
92

66
)

0.
34

56
0.

41
4

*D
et

er
m

in
is

m
(R

Q
A

)
0.

99
64

(0
.9

86
0,

1.
00

68
)

0.
96

92
(0

.9
56

3,
0.

98
22

)
0.

00
16

0.
02

1

*R
ec

u
rr

R
at

e
(R

Q
A

)
0.

08
24

(0
.0

77
0,

0.
08

78
)

0.
02

30
(0

.0
20

4,
0.

02
56

)
0.

00
29

0.
02

1

*S
D

12
(L

P
P

M
1)

0.
03

23
(0

.0
17

9,
0.

04
67

)
0.

07
17

(0
.0

54
3,

0.
08

90
)

0.
00

77
0.

02
3

*S
(L

P
P

M
1)

0.
03

10
(0

.0
18

8,
0.

04
33

)
0.

06
49

(0
.0

49
3,

0.
08

06
)

0.
00

77
0.

02
3

*S
D

R
R

(L
P

P
M

2)
0.

02
66

(0
.0

13
7,

0.
03

95
)

0.
05

55
(0

.0
41

0,
0.

07
00

)
0.

00
77

0.
02

3

*S
D

12
(L

P
P

M
2)

0.
00

20
(0

.0
01

6,
0.

00
24

)
0.

00
89

(0
.0

05
7,

0.
01

20
)

0.
00

81
0.

02
3

*S
(L

P
P

M
2)

0.
02

66
(0

.0
14

7,
0.

03
84

)
0.

05
56

(0
.0

41
1,

0.
07

01
)

0.
00

81
0.

02
3

*S
D

2
(L

P
P

M
2)

[s
ec

]
0.

00
20

(0
.0

00
8,

0.
00

32
)

0.
00

73
(0

.0
02

9,
0.

01
17

)
0.

01
05

0.
02

5

*S
D

R
R

(L
P

P
M

1)
0.

79
15

(0
.7

13
5,

0.
86

96
)

0.
51

70
(0

.4
45

3,
0.

58
87

)
0.

01
68

0.
03

4

*S
D

2
(L

P
P

M
1)

[s
ec

]
0.

02
41

(0
.0

12
2,

0.
03

61
)

0.
04

55
(0

.0
32

1,
0.

05
89

)
0.

02
14

0.
03

7

S
D

1
(L

P
P

M
1)

[s
ec

]
0.

02
21

(0
.0

12
6,

0.
03

16
)

0.
03

62
(0

.0
26

8,
0.

04
56

)
0.

08
96

0.
12

3

S
D

1
(L

P
P

M
2)

[s
ec

]
0.

83
19

(0
.7

43
8,

0.
92

01
)

0.
75

69
(0

.6
29

6,
0.

88
42

)
0.

08
96

0.
12

3

P
h
as

eE
n
tr

(B
is

p
ec

tr
u
m

)
4.

09
16

(4
.0

68
3,

4.
11

49
)

4.
10

25
(4

.0
73

7,
4.

13
14

)
0.

18
17

0.
22

5

M
ea

n
M

ag
n
it

u
d
e

(B
is

p
ec

tr
u
m

)
0.

00
02

(9
.3

9e
-0

5,
2.

33
e-

04
)

0.
00

03
(3

.1
6e

-0
6,

6.
04

e-
05

)
0.

57
15

0.
64

4

L
L

(B
is

p
ec

tr
u
m

)
[s

ec
4
]

0.
00

13
(0

.0
00

3,
0.

00
23

)
0.

00
21

(0
.0

00
7,

0.
00

36
)

0.
64

54
0.

69
3

L
H

(B
is

p
ec

tr
u
m

)
[s

ec
4
]

0.
00

40
(0

.0
00

8,
0.

00
72

)
0.

00
48

(0
.0

01
1,

0.
00

85
)

0.
87

41
0.

90
5

H
H

(B
is

p
ec

tr
u
m

)
[s

ec
4
]

0.
01

32
(0

.0
03

9,
0.

02
25

)
0.

01
26
±

0.
01

19
0.

92
19

0.
92

0



Assessment of Heartbeat Dynamics in Dysphoria 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Num of Featrues

40

45

50

55

60

65

70

75

80

A
C

C
U

R
A

C
Y

 %

RFE CLASSIFIER COMPARISON

KNN-RFE

SVM-RFE

SVM-STAT-RFE

KNN-STAT-RFE

SVM-CORR-RFE

KNN-CORR-RFE

Figure 2. Accuracy trend on validation-set as a function of the number of selected

features. For each method, the corresponding curve shows the accuracy considering

the first N ranked features (from 1 to 26). Features are ranked according to the

corresponding algorithm criterion.

Concerning the correlation analysis, no significant differences were found, except

for the SDRR feature that correlated with the BDI-II scores of the control group with

a ρ of 0.51.

Concerning the classification, Figure 2 shows the balanced accuracy (i.e., average

between specificity and sensitivity of the confusion matrix) at each iteration of the

proposed K-NN-RFE algorithm, as well as the other classifiers. Note that K-NN-RFE

outperformed SVM-STAT/CORR-RFE, K-NN-STAT/CORR-RFE and the canonical

SVM-RFE, and achieved a maximum balanced accuracy of 79.17%, with sensitivity

75.00% and specificity 83.33%, respectively. The maximum accuracy was achieved

selecting the nine most relevant features according to the RFE criteria.

The complete list of features ordered by their median rank over all folds is reported

in Table 3. Note that the most informative feature was the Fractal Dimension, and 6

out of the 9 selected features were derived from heartbeat nonlinear/complex dynamics

and HOS analysis.

To further demonstrate the crucial role of such nonlinear dynamics as additional

biomarker of dysphoria, we performed a K-NN classification considering linear and

nonlinear HRV features separately. Note that, in both cases, the proposed K-NN-RFE

algorithm, showed a peak in the balanced accuracy using the first 3 most informative

features. However, in the linear case we achieved a balanced accuracy of 66.67% (Table

5), while in the nonlinear case, the balanced accuracy reached the 75.70% (Table 6).
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Table 3. Features ranking according to the highest cumulative predictive power (see

Section 2.4.1).

Feature

FractDim *

LF power *

HF power *

MeanMagnitude (Bispectrum) *

LL (Bispectrum) *

PhaseEntr (Bispectrum) *

Recurr Rate (RQA) *

RMSSD *

Determinism (RQA) *

LH (Bispectrum)

SD2 (LPP M2)

SD1 (LPP M1)

SD12 (LPP M2)

S (LPP M1)

µRR

σRR

SD1 (LPP M2)

HH (Bispectrum)

SD2 (LPP M1)

S (LPP M2)

SD12 (LPP M1)

SDRR (LPP M2)

SDRR (LPP M1)

Sample Entropy

LF/HF power

DFA α1

asterisks represent the selected features for the most accurate K-NN model.

Table 4. Confusion matrix obtained applying the K-NN-RFE method to the whole

feature-set. The table corresponds to the feature selection step that achieves the

highest accuracy (i.e., the maximum of the blue curve in Figure 2).

K-NN DYSPHORIC NON-DYSPHORIC

DYSPHORIC 75.00% 16.67%

NONDYSPHORIC 25.00% 83.33%

Balanced accuracy: 79.16% (considering the first 9 features with the highest prediction

power (see Table 3)).
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Table 5. Confusion matrix obtained applying the K-NN-RFE method to the linear

feature-set only. The table corresponds to the feature selection step that achieves the

highest accuracy.

K-NN DYSPHORIC NON-DYSPHORIC

DYSPHORIC 58.33% 25.00%

NONDYSPHORIC 41.77% 75.00%

Balanced accuracy: 66.67% (considering the first 3 features with the highest prediction

power: HF, LF, and RMSSD).

Table 6. Confusion matrix obtained applying the K-NN-RFE method to the

Nonlinear/HOS feature-set only. The table corresponds to the feature selection step

that achieves the highest accuracy.

K-NN DYSPHORIC NON-DYSPHORIC

DYSPHORIC 70.83% 19.44%

NONDYSPHORIC 29.17% 80.56%

Balanced accuracy: 75.70 % (considering the first 3 features with the highest

prediction power: FracDim, MeanMagnitude (Bispectrum), and Determinism (RQA)).

4. DISCUSSION AND CONCLUSION

We investigated heartbeat linear and nonlinear/complex dynamics in dysphoric

young female adults considering short-term ECG recordings in resting state. Sixty

undergraduate students were enrolled in the study, including 24 dysphoric 36 control

subjects with properly associated BDI-II scores. Our results demonstrate that it

is possible to derive effective biomarkers of dysphoria using a proper combination

of linear and nonlinear/complexity quantifiers of cardiovascular variability, as from

HRV series. Furthermore, using this approach we were able to describe new

psychophysiological characteristics of dysphoria which have not been described. Namely,

as a preliminary/exploratory step, non-parametric statistical analysis revealed that

most significant differences were associated with HRV complexity (especially fractal

dimension and sample entropy), recurrence plot features, and LPP parameters, with

higher values in dysphoria. As a large amount of literature links pathological

(mental) states, including major depression [7], with reduced cardiovascular complexity

[7, 42, 65, 72, 73], our results pose several scientific questions for the understanding the

neurobiology underpinning minor depressive disorders. Note that other cardiovascular

and neurological pathologies, such as post-infarction [75] and Parkinson’s disease [74]

have been associated with increased cardiovascular complexity than healthy controls.

To our knowledge, this is the first study assessing dysphoria in terms

of multi-dimensional autonomic patterns, proposing a different and more

complex biological scenario than depression. According to a relevant line of

research, our data suggests that dysphoria represents a specific and distinct

clinical entity [76,77], and not simply a less severe form of depression [78].
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Moreover, also epidemiological data regarding the morbility and mortality

of this condition suggest that it has to be treated as a specific and clinically

relevant entity [76, 77]. More studies (see below in the limitations), are

needed to further confirm such an hypothesis.

Aiming to a direct clinical translation of these results, we moved beyond standard

statistical analysis and developed an automatic decision support system algorithm to

discern dysphoria from healthy controls using a recursive feature elimination procedure

applied to a K-NN-based classifier (K-NN-RFE). This confirmed the significant

discriminant power of heartbeat complexity, particularly referring to fractal dimension

and RQA. In fact, by properly combining 9 features quantifying linear, HOS and

nonlinear/complex dynamics (see Table 3), we achieved a balanced accuracy of

79.17% (with specificity 83.33% and sensitivity of 75.00%) discriminating at a single-

subject level. Of note, the selected feature-set comprised features coming from both

standard frequency domain and high order spectra in addition to the fractal dimension

and recurrence plot indexes. This result is in agreement with a large amount of

studies suggesting that an effective, comprehensive assessment of ANS activity through

cardiovascular dynamics should include multivariate, linear and nonlinear measures

(see, e.g., reviews [65, 72] and references therein). To further confirm this, we

showed a significant decrease of the accuracy (i.e., 66.67%) considering only HRV

features quantifying cardiovascular linear dynamics. Concerning the learning

algorithm comparisons, we showed that the feature-set, characterized by

a combination of linear and nonlinear features, was better classified

by a model-free nonlinear method (i.e., k-NN). Particularly, this latter

outperforms SVM when the features are selected considering a wrapper

approach (i.e., a sequential forward selection) rather than estimating

possible dependences within the feature set.

The present study came with limitations. First, due to the higher prevalence of

dysphoria in the female population, and to avoid gender-related confounding factors,

female volunteers only were enrolled [53, 79]. In this population, we did not control

for the ovaric cycle phase which could bias heartbeat dynamics [80, 81]. Moreover,

clinically depressed patients and individuals with BDI-II score between 8 and 12 were

excluded. This was to ensure separation between groups without ambiguity [23, 24].

Finally, we considered short-term cardiovascular variability, leveraging on standard

recordings performed during standard cardiological visits, therefore regardless any, may

be important, indices of long-term variability. Another limitation of this paper is related

to the missing comparison with cardiovascular data gathered from depressed patients.

Although we compared with previous evidences reported in the literature, as we found

a distinctive cardiovascular pattern for dysphoric individuals, a direct comparison with

depressed patients would have given further insights to our conclusion: dysphoria is

a distinct mood disorder and not simply a milder form of depression. Finally, a

more general limitation regarding the approach applied to the present paper has to

be discussed. Despite the large number of publications in this field, the study of
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psychobiology of mental disorders is limited by the fact that patients are selected using

subjective measures exclusively (e.g., through answers to a questionnaire and/or to a

clinical interview). This criticism seems even more important when artificial intelligence

algorithms are used. In fact, the model is usually optimized to fit the subjective, and thus

potentially unreliable, measures. Nevertheless, the use of well validated questionnaires

and clinical interviews (e.g., the SCID-I) to evaluate patient’s symptoms is, to date,

the “gold standard of psychological assessment”. Thus, the only way to currently study

biological correlates of mental disorders is to consider the patient experience as described

by clinical rating scales. Note that rating scales, and in particular BDI-II, have a good

reliability and several external and internal validations [30, 31]. Our aim was not to

implement a model of HRV describing dysphoric patients, but to use learning algorithms

to better describe and understand dysphoria. Indeed, through this approach, we were

able to uncover novel properties of this pathological condition.

Although with intrinsic limitations, this study provides important insights in the

psychophysiology of a mental disorder such as dysphoria. Once the characterization

of associated autonomic dysfunctions will be well-defined, future studies may apply

unsupervised learning algorithms identify sub-clusters of patients different symptoms or

clinical phenotypes [82].

To conclude, to the best of our knowledge this is the first

study investigating multi-dimensional feature of ANS dynamics of

cardiovascular control in dysphoria with statistical power at the single-

subject level. This multi-feature approach, not only produces a better

characterization of the disorder from a physiological point of view, but also

highlights novel properties of autonomic activity in dysphoric participants.

This latter, in turn, provides further strength to the idea, supported by

experimental studies [76, 77], that dysphoria is a defined condition with

specific characteristics which are different both from healthy fully euthimic

controls and from full-blown major depression. Moreover, ANS multi-

dimensional analysis may result in a more specific clinical tool than the

ones relying on a single feature. Given the aspecific dynamics associated

with ANS functioning, very similar changes of a single heartbeat feature,

in fact, may be observed in pathological conditions, as well as in healthy

ones (e.g., during cognitive/physical stress, sleep).

Future endeavours will be directed to increase the number of dysphoric and

healthy control subjects enrolled in the study, including male population, as well as

the investigation of further nonlinear/complexity measures of heartbeat dynamics to

increase the sensitivity and specificity of the proposed assessment.
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[45] G. Valenza, L. Citi, C. Gentili, A. Lanatá, E. Scilingo, and R. Barbieri, “Point-process nonlinear

autonomic assessment of depressive states in bipolar patients,” Methods of Information in

Medicine, vol. 53, no. 4, pp. 296–302, 2014.

[46] K. Chua, V. Chandran, U. Acharya, and C. Lim, “Computer-based analysis of cardiac state

using entropies, recurrence plots and poincare geometry,” Journal of medical engineering &

technology, vol. 32, no. 4, pp. 263–272, 2008.

[47] M. Masè, L. Faes, R. Antolini, M. Scaglione, and F. Ravelli, “Quantification of synchronization

during atrial fibrillation by shannon entropy: validation in patients and computer model of

atrial arrhythmias,” Physiological measurement, vol. 26, no. 6, p. 911, 2005.

[48] J. P. Zbilut, N. Thomasson, and C. L. Webber, “Recurrence quantification analysis as a tool for

nonlinear exploration of nonstationary cardiac signals,” Medical engineering & physics, vol. 24,

no. 1, pp. 53–60, 2002.

[49] D. Hubert, D. Mestivier, J. Jarnet, M. E. Safar, and N. P. Chau, “Quantification of sympathetic

and parasympathetic tones by nonlinear indexes in normotensive rats,” American Journal of

Physiology-Heart and Circulatory Physiology, vol. 275, no. 4, pp. 1290–1297, 1998.

[50] Jaros law Piskorski and Przemys law Guzik. Filtering poincare plots. Computational methods in

science and technology, 11(1):39–48, 2005.

[51] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the royal statistical society. Series B

(Methodological), pages 289–300, 1995.

[52] G. Valenza, A. Greco, L. Citi, M. Bianchi, R. Barbieri, and E. Scilingo, “Inhomogeneous point-

processes to instantaneously assess affective haptic perception through heartbeat dynamics

information,” Scientific Reports, vol. 6, 2016.

[53] M. M. Weissman and G. L. Klerman, “Sex differences and the epidemiology of depression,”

Archives of general psychiatry, vol. 34, no. 1, pp. 98–111, 1977.

[54] R. Lynn and T. Martin, “Gender differences in extraversion, neuroticism, and psychoticism in 37

nations,” The Journal of social psychology, vol. 137, no. 3, pp. 369–373, 1997.

[55] J. M. Cyranowski, E. Frank, E. Young, and M. K. Shear, “Adolescent onset of the gender

difference in lifetime rates of major depression: a theoretical model,” Archives of general

psychiatry, vol. 57, no. 1, pp. 21–27, 2000.

[56] K. S. Kendler, L. M. Thornton, and C. A. Prescott, “Gender differences in the rates of exposure

to stressful life events and sensitivity to their depressogenic effects,” American Journal of



Assessment of Heartbeat Dynamics in Dysphoria 19

Psychiatry, vol. 158, no. 4, pp. 587–593, 2001.

[57] I. H. Gotlib and C. L. Hammen, Handbook of depression. Guilford Press, 2008.

[58] R. D. Goodwin and I. H. Gotlib, “Gender differences in depression: the role of personality factors,”

Psychiatry research, vol. 126, no. 2, pp. 135–142, 2004.

[59] L. Lasa, J. Ayuso-Mateos, J. Vazquez-Barquero, F. Dıez-Manrique, and C. Dowrick, “The use of

the beck depression inventory to screen for depression in the general population: a preliminary

analysis,” Journal of affective disorders, vol. 57, no. 1, pp. 261–265, 2000.

[60] S. D. Sprinkle, D. Lurie, S. L. Insko, G. Atkinson, G. L. Jones, A. R. Logan, and N. N.

Bissada, “Criterion validity, severity cut scores, and test-retest reliability of the beck depression

inventory-ii in a university counseling center sample.” Journal of counseling psychology, vol. 49,

no. 3, p. 381, 2002.

[61] C. D’Angelo, A. Mirijello, L. Leggio, A. Ferrulli, V. Carotenuto, N. Icolaro, A. Miceli,

V. D’Angelo, G. Gasbarrini, and G. Addolorato, “State and trait anxiety and depression in

patients with primary brain tumors before and after surgery: 1-year longitudinal study,” 2008.

[62] J. J. Gross and O. P. John, “Individual differences in two emotion regulation processes:

implications for affect, relationships, and well-being.” Journal of personality and social

psychology, vol. 85, no. 2, p. 348, 2003.

[63] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE transactions on

biomedical engineering, no. 3, pp. 230–236, 1985.

[64] L. Citi, E. N. Brown, and R. Barbieri, “A real-time automated point-process method for the

detection and correction of erroneous and ectopic heartbeats,” IEEE transactions on biomedical

engineering, vol. 59, no. 10, pp. 2828–2837, 2012.

[65] U. R. Acharya et al., “Heart rate variability,” in Advances in cardiac signal processing. Springer,

2007, pp. 121–165.

[66] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability:

a review,” Medical and biological engineering and computing, vol. 44, no. 12, pp. 1031–1051,

2006.

[67] D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, “Sample entropy analysis of

neonatal heart rate variability,” American Journal of Physiology-Regulatory, Integrative and

Comparative Physiology, vol. 283, no. 3, pp. R789–R797, 2002.

[68] D. E. Lake and J. R. Moorman, “Accurate estimation of entropy in very short physiological time

series: the problem of atrial fibrillation detection in implanted ventricular devices,” American

Journal of Physiology-Heart and Circulatory Physiology, vol. 300, no. 1, pp. H319–H325, 2011.

[69] K. Ansari-Asl, G. Chanel, and T. Pun, “A channel selection method for eeg classification in

emotion assessment based on synchronization likelihood,” in Signal Processing Conference,

2007 15th European. IEEE, 2007, pp. 1241–1245.

[70] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system

theory: theoretical results and some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp.

278–305, 1991.

[71] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using

support vector machines,” Machine learning, vol. 46, no. 1, pp. 389–422, 2002.

[72] R. Sassi et al., “Advances in heart rate variability signal analysis: joint position statement by the

e-cardiology esc working group and the european heart rhythm association co-endorsed by the

asia pacific heart rhythm society,” Europace, p. euv015, 2015.

[73] C. Gentili, S. Messerotti Benvenuti, D. Palomba, A. Greco, E. P. Scilingo, and G. Valenza,

“Assessing mood symptoms through heartbeat dynamics: An HRV study on cardiosurgical

patients”, Journal of Psychiatric Research, vol. 95, pp. 179–188, 2017.

[74] A. Porta et al., “Short-term complexity indexes of heart period and systolic arterial pressure

variabilities provide complementary information,” Journal of Applied Physiology, vol. 113,

no. 12, pp. 1810–1820, 2012.

[75] T. Makikallio et al., “Abnormalities in beat to beat complexity of heart rate dynamics in patients



Assessment of Heartbeat Dynamics in Dysphoria 20

with a previous myocardial infarction,” Journal of the American College of Cardiology, vol. 28,

no. 4, pp. 1005–1011, 1996.

[76] V. Starcevic, D. Berle, K. Viswasam, A. Hannan, D. Milicevic, V. Brakoulias, and E. Dale,

“Specificity of the relationships between dysphoria and related constructs in an outpatient

sample,” Psychiatric Quarterly, vol. 86, no. 4, pp. 459–469, 2015.

[77] A. Dayer, J.-M. Aubry, L. Roth, S. Ducrey, and G. Bertschy, “A theoretical reappraisal of mixed

states: dysphoria as a third dimension,” Bipolar Disorders, vol. 2, no. 4, pp. 316–324, 2000.

[78] I. H Gotlib and J. Joormann, “Cognition and depression: current status and future directions”.

Annual review of clinical psychology, vol 6, pp. 285–312, 2010.

[79] R. C. Kessler, “Epidemiology of women and depression,” Journal of affective disorders, vol. 74,

no. 1, pp. 5–13, 2003.

[80] X. Bai, J. Li, L. Zhou, and X. Li, “Influence of the menstrual cycle on nonlinear properties of

heart rate variability in young women,” American Journal of Physiology-Heart and Circulatory

Physiology, vol. 297, no. 2, pp. H765–H774, 2009.

[81] A. S. Leicht, D. A. Hirning, and G. D. Allen, “Heart rate variability and endogenous sex hormones

during the menstrual cycle in young women,” Experimental physiology, vol. 88, no. 3, pp. 441–

446, 2003.

[82] C. Gentili, “Why do we keep failing in identifying reliable biological markers in depression?”

Journal of Evidence-Based Psychotherapies, vol. 17, no. 2, pp. 69–84, 2017.


