180 research outputs found

    A simple diagnostic based on sea surface height with an application to central Pacific ENSO

    Get PDF
    We use output from a freely running NEMO model simulation for the equatorial Pacific to investigate the utility of linearly removing the local influence of vertical displacements of the thermocline from variations in sea surface height. We show that the resulting time series of residual sea surface height, denoted ηnlti, measures variations in near-surface heat content that are independent of the local vertical displacement of the thermocline and can arise from horizontal advection, surface heat flux, and diapycnal mixing processes. We find that the variance of ηnlti and its correlation with sea surface temperature are focused on the Niño4 region. Furthermore, ηnlti averaged over the Niño4 region is highly correlated with indices of central Pacific El Niño–Southern Oscillation (CP ENSO), and its variance in 21-year running windows shows a strong upward trend over the past 50 years, corresponding to the emergence of CP ENSO following the 1976/77 climate shift. We show that ηnlti can be estimated from observations, using satellite altimeter data and a linear multi-mode model. The time series of ηnlti, especially when estimated using the linear model, show pronounced westward propagation in the western equatorial Pacific, arguing for an important role for zonal advective feedback in the dynamics of CP ENSO, in particular for cold events. We also present evidence that the role of the thermocline displacement in influencing sea surface height increased strongly after 2000 in the eastern part of the Niño4 region, at a time when CP ENSO was particularly active. Finally, the diagnostic is easy to compute and can be easily applied to mooring data or coupled climate models.</p

    Prospects for decadal prediction of the North Atlantic Oscillation (NAO)

    Get PDF
    For certain, but realizable, states of the thermohaline and wind driven circulation of the North Atlantic Ocean, we demonstrate the possibility of making statements regarding the likely range of values to be taken by the annual average of the NAO-index on time scales out to a decade. Given that the North Atlantic is currently in such a predictable state, a simple surrogate model yields a prediction that the NAO index is more likely to be positive than negative for the next couple of years, followed by several years in which the NAO index is more likely to be negative

    Current and Oxygen Variability in the Tropical North East Atlantic

    Get PDF
    The tropical North East Atlantic (TNEA) is characterized by an oxygen minimum zone (OMZ) that is located at intermediate depth (300m – 700m) and latitudinally spreads between the oxygen-rich equatorial Atlantic and the Cape Verde Frontal Zone at about 20°N. Recent studies have shown that local oxygen fluctuations and the associated ventilation of the TNEA OMZ are mainly caused by diapycnal mixing and mesoscale eddies. Zonal currents additionally ventilate the TNEA by advecting oxygen-rich water from the well-ventilated western boundary eastwards. The spatial and temporal variability of these zonal currents is thought to contribute to the oxygen variability in this regime. An intense measurement program along 23°W cutting through the TNEA OMZ has been executed during recent years. Moored observations and repeat ship sections were performed with CTD/O2 (conductivity, temperature, depth, oxygen) and current measurements. Here, we analyze the spatial and temporal variability of the zonal currents in the TNEA at intermediate depths and discuss their respective role for the spatial and temporal oxygen variability as well as the ventilation of the OMZ. Particularly, the observed annual cycle of the North Equatorial Undercurrent (NEUC) at 5°N, which is several cm/s at intermediate depth, causes phase-shifted (zonal velocity leading oxygen) annual oxygen fluctuations in a range of about 10 ”mol/kg. In general, time-varying zonal currents advect oxygen eastwards that is meridionally redistributed by mesoscale eddies. The overall effect of those currents for the ventilation of the OMZ is discussed

    Factors influencing the meridional width of the equatorial deep jets

    Get PDF
    Equatorial deep jets (EDJs) are vertically alternating, stacked zonal currents that flow along the Equator in all three ocean basins at intermediate depth. Their structure can be described quite well by the sum of high-baroclinic-mode equatorial Kelvin and Rossby waves. However, the EDJ meridional width is larger by a factor of 1.5 than inviscid theory predicts for such waves. Here, we use a set of idealised model configurations representing the Atlantic Ocean to investigate the contributions of different processes to the enhanced EDJ width. Corroborated by the analysis of shipboard velocity sections, we show that widening of the EDJs by momentum loss due to irreversible mixing or other processes contributes more to their enhanced time mean width than averaging over meandering of the jets. Most of the widening due to meandering can be attributed to the strength of intraseasonal variability in the jets' depth range, suggesting that the jets are meridionally advected by intraseasonal waves. A slightly weaker connection to intraseasonal variability is found for the EDJ widening by momentum loss. These results enhance our understanding of the dynamics of the EDJs and, more generally, of equatorial waves in the deep ocean.</p

    Three‐Dimensional Numerical Simulations of Internal Tides in the Angolan Upwelling Region

    Get PDF
    In austral winter, biological productivity at the Angolan shelf reaches its maximum. The alongshore winds, however, reach their seasonal minimum suggesting that processes other than local wind‐driven upwelling contribute to near‐coastal cooling and upward nutrient supply, one possibility being mixing induced by internal tides (ITs). Here, we apply a three‐dimensional ocean model to simulate the generation, propagation, and dissipation of ITs at the Angolan continental slope and shelf. Model results are validated against moored acoustic Doppler current profiler and other observations. Simulated ITs are mainly generated in regions with a critical/supercritical slope typically between the 200‐ and 500‐m isobaths. Mixing induced by ITs is found to be strongest close to the coast and gradually decreases offshore thereby contributing to the establishment of cross‐shore temperature gradients. The available seasonal coverage of hydrographic data is used to design simulations to investigate the influence of seasonally varying stratification characterized by low stratification in austral winter and high stratification in austral summer. The results show that IT characteristics, such as their wavelengths, sea surface convergence patterns, and baroclinic structure, have substantial seasonal variations and additionally strong spatial inhomogeneities. However, seasonal variations in the spatially averaged generation, onshore flux, and dissipation of IT energy are weak. By evaluating the change of potential energy, it is shown, nevertheless, that mixing due to ITs is more effective during austral winter. We argue that this is because the weaker background stratification in austral winter than in austral summer acts as a preconditioning for IT mixing

    Determining North Atlantic meridional transport variability from pressure on the western boundary: a model investigation.

    Get PDF
    In this paper we investigate the possibility of determining North Atlantic meridional transport variability using pressure on the western boundary, focusing on the 42degN latitude of the Halifax WAVE array. We start by reviewing the theoretical foundations of this approach. Next we present results from a model analysis, both statistical and dynamic, that demonstrate the feasibility of the approach. We consider how well we can quantify the meridional transport variability at 42degN given complete knowledge of bottom pressure across the basin, and to what degree this quantification is degraded by first ignoring the effect of intervening topography, and then by using only bottom pressure on the western boundary. We find that for periods of greater than one year we can recover more than 90% of the variability of the main overturning cell at 42degN using only the western boundary pressure, provided we remove the depth-average boundary pressure signal. This signal arises from a basin mode of bottom pressure variability, which has power at all timescales, but that does not in truth have a meridional transport signal associated with it, and from the geostrophic depth-independent compensation of the Ekman transport. An additional benefit of the removal of the depth-average pressure is that this high-frequency Ekman signal, which is essentially noise as far as monitoring the MOC for climatically important changes is concerned, is clearly separated from other modes

    Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO

    Get PDF
    Northern Europe and the UK experienced an exceptionally warm and wet winter in 2019/20, driven by an anomalously positive North Atlantic Oscillation (NAO). This positive NAO was well forecast by several seasonal forecast systems, suggesting that this winter the NAO was highly predictable at seasonal lead times. A very strong positive Indian Ocean dipole (IOD) event was also observed at the start of winter. Here we use composite analysis and model experiments, to show that the IOD was a key driver of the observed positive NAO. Using model experiments that perturb the Indian Ocean initial conditions, two teleconnection pathways of the IOD to the north Atlantic emerge: a tropospheric teleconnection pathway via a Rossby wave train travelling from the Indian Ocean over the Pacific and Atlantic, and a stratospheric teleconnection pathway via the Aleutian region and the stratospheric polar vortex. These pathways are similar to those for the El Niño Southern Oscillation link to the north Atlantic which are already well documented. The anomalies in the north Atlantic jet stream location and strength, and the associated precipitation anomalies over the UK and northern Europe, as simulated by the model IOD experiments, show remarkable agreement with those forecast and observed

    The dynamics of power and resistance in police interview discourse

    Get PDF
    This is a study of police interviewing using an integrated approach, drawing on CA, CDA and pragmatics. The study focuses on the balance of power and control, finding that in particular the institutional status of the participants, the discursive roles assigned to them by the context, and their relative knowledge, are significant factors affecting the dynamics of the discourse. Four discursive features are identified as particularly significant, and a detailed analysis of the complex interplay of these features shows that power and control are constantly under negotiation, and are always open to challenge and resistance. Further it is shown that discursive dominance is not necessarily advantageous to participants, due to the specific goals and purposes of the police interview context. A wider consideration of the context illustrates the contribution that linguistics can make to the use of police interview data as evidence in the UK criminal justice system

    The Heart of the Matter. About Good Nursing and Telecare

    Get PDF
    Nurses and ethicists worry that the implementation of care at a distance or telecare will impoverish patient care by taking out ‘the heart’ of the clinical work. This means that telecare is feared to induce the neglect of patients, and to possibly hinder the development of a personal relation between nurse and patient. This study aims to analyse whether these worries are warranted by analysing Dutch care practices using telemonitoring in care for chronic patients in the Netherlands. How do clinical practices of nursing change when telecare devices are introduced and what this means for notions and norms of good nursing? The paper concludes that at this point the practices studied do not warrant the fear of negligence and compromised relations. Quite the contrary; in the practices studied, telecare lead to more frequent and more specialised contacts between nurses and patients. The paper concludes by reflecting on the ethical implications of these changes

    On the width of the equatorial deep jets

    Get PDF
    The equatorial deep jets (EDJ) are a striking feature of the equatorial ocean circulation. In the Atlantic Ocean, the EDJ are associated with a vertical scale of between 300 and 700 m, a time scale of roughly 4.5 years and upward energy propagation to the surface. It has been found that the meridional width of the EDJ is roughly 1.5 times larger than expected based on their vertical scale. Here we use a shallow water model for a high order baroclinic vertical normal mode to argue that mixing of momentum along isopycnals can explain the enhanced width. A lateral eddy viscosity of 300 m2 s−1 10 is found to be sufficient to account for the width implied by observations
    • 

    corecore