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Abstract

Northern Europe and the UK experienced an exceptionally warm and wet win-

ter in 2019/20, driven by an anomalously positive North Atlantic Oscillation

(NAO). This positive NAO was well forecast by several seasonal forecast sys-

tems, suggesting that this winter the NAO was highly predictable at seasonal

lead times. A very strong positive Indian Ocean dipole (IOD) event was also

observed at the start of winter. Here we use composite analysis and model

experiments, to show that the IOD was a key driver of the observed positive

NAO. Using model experiments that perturb the Indian Ocean initial condi-

tions, two teleconnection pathways of the IOD to the north Atlantic emerge: a

tropospheric teleconnection pathway via a Rossby wave train travelling from

the Indian Ocean over the Pacific and Atlantic, and a stratospheric tele-

connection pathway via the Aleutian region and the stratospheric polar vortex.

These pathways are similar to those for the El Niño Southern Oscillation link

to the north Atlantic which are already well documented. The anomalies in

the north Atlantic jet stream location and strength, and the associated precipi-

tation anomalies over the UK and northern Europe, as simulated by the model

IOD experiments, show remarkable agreement with those forecast and

observed.
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1 | INTRODUCTION

The winter of 2019/20 saw a positive North Atlantic
Oscillation (NAO; Figure 1a). This strengthened the
north Atlantic storm track, and moved it further pole-
ward, leading to a warm and wet winter in the UK and

northern Europe. Indeed, Europe as a whole experi-
enced its warmest winter on record, and February 2020
was the wettest UK February on record. Tropical rainfall
can drive the extratropics in winter and affects the NAO
(Scaife et al., 2017a). In particular, a strong La Niña
event can cause a strongly positive NAO (through the
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teleconnection pathways described in: Ineson and
Scaife, 2009; Jiménez-Esteve and Domeisen, 2018; Hard-
iman et al., 2019). However, during this winter, the El
Niño Southern Oscillation (ENSO) was in a neutral
state.

In winter 2019/20, the observed sea surface tempera-
tures in the west/east parts of the Indian Ocean basin
were anomalously warm/cold, leading to a positive
Indian Ocean Dipole (IOD; Saji et al., 1999; Webster
et al., 1999) that was the second strongest recorded since
1972 (Doi et al., 2020). This paper considers whether it is
likely that the positive IOD contributed to the observed
positive NAO. The IOD is a coupled atmosphere–ocean
phenomenon (Rao et al., 2002), with associated planetary
wave activity (Min et al., 2008; Weller and Cai, 2013),
that is known to impact temperatures and rainfall across
the globe (Saji and Yamagata, 2003). Furthermore, sev-
eral seasonal forecasting systems (described in Section 2)

captured this strongly anomalously positive IOD in early
winter, as well as predicting a positive NAO. A particular
focus of the current literature on IOD impacts is
Australia (Cai et al., 2011; Weller and Cai, 2013) and the
southern high latitudes (Liu et al., 2007). Nevertheless,
a link between Indian Ocean rainfall and the NAO
has been previously identified (Hoerling et al., 2004;
Bader and Latif, 2005; Dahlke, 2015; Gollan and
Greatbatch, 2017), teleconnections between the Indian
Ocean and the north Atlantic were considered by
Fletcher and Cassou (2015), and the NAO was found to
be sensitive to Indian Ocean SSTs in the atmosphere only
experiments of Baker et al. (2019). These studies all use
model experiments to demonstrate the link between the
Indian Ocean and the NAO. In the present study, we look
further into the mechanisms whereby the IOD can influ-
ence the north Atlantic using a combination of reanalysis
data (see Figure 2) and model experiments. ENSO is

(a) (b)

(c) (d)

(e) (f)

FIGURE 1 Common

+NAO signal in models.

(a) Standardised North Atlantic

Oscillation (NAO) index,

HadSLP. Mean sea level

pressure (MSLP) anomalies for

DJF 2019/20 in (b) the ERA-5

reanalysis, and November 2019

forecasts of MSLP(hPa), for DJF

2019/20, as simulated by the

(c) UKMO (GloSea5),

(d) ECMWF (SEAS5), and

(e) Météo-France (System 7) C3S

systems, and the (f) DP3 decadal

prediction system. Anomalies in

panels (b)–(f) are relative to the

respective modelled and

observed climatologies formed

over the (hindcast) period

1993/4–2016/7. Note the
different colour bars for (b) and

(c)–(f) – this is consistent with

the signal-to-noise paradox

(Scaife and Smith, 2018)
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known to impact the IOD (Marchant et al., 2007; Liu
et al., 2014), so the effects of ENSO are removed as far
as is possible from our reanalysis composites by using
linear regression. We consider how the influence of
the IOD on the NAO may have increased the perfor-
mance of winter forecasts (following on from studies
of forecast system performance in earlier winters:
Scaife et al., 2017b, Dunstone et al., 2018). This may be
particularly important for seasonal forecasting of

European winters in the future, since the frequency
and intensity of positive IOD events has been observed
to increase throughout the twentieth century and is
likely to continue to do so due to climate change
(Abram et al., 2020).

Section 2 describes the datasets and seasonal forecast-
ing systems used in this study, results of analyses and
model perturbation experiments are presented in Sec-
tion 3, and conclusions are given in Section 4.

(a) (b)

(c) (d)

(e) (f)

FIGURE 2 Strong positive IOD. (a) Observed SST anomalies (2019–[2014–2018]) for November (HadISST). Green boxes show regions

used to define the Dipole Mode Index (DMI = area averaged SST in left box minus right box). (b) SST perturbation, ‘Original – IOD_Neg’,
for November in the IOD experiment. Green box shows the region where the SST was perturbed. Note the colour bar for (b) uses double the

values for (a) since (b) shows positive 2019 anomalies minus negative 2019 anomalies. (c) Observed (HadISST) November raw DMI index

(red), and with ENSO signal removed using linear regression (blue). (d) Observed DMI evolution during winter 2019/20 (red line) and

averaged over all winters with strong positive DMI – where November DMI is greater than plus one standard deviation (blue line, with

shading showing the 95% confidence interval). Composite patterns for the IOD [DMI > 1σ – DMI < −1σ, where σ = standard deviation] over

the last 40 years (1979/80–2018/19) on (e) MSLP (hPa) and (f) Precipitation (mm/day) are shown, with ENSO signal removed and stippling

denoting statistical significance at the 90% level
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2 | DATASETS, SEASONAL
FORECAST SYSTEMS, AND
EXPERIMENTS

Sea surface temperature (SST) from the Hadley Centre
sea Ice and Sea Surface Temperature data set (HadISST;
Rayner et al., 2003) is used to define the IOD Dipole
Mode Index (DMI = SST[50–70�E, 10�S–10�N] – SST
[90–110�E, 10�S-Equator]; Saji et al., 1999). Mean Sea
level pressure (MSLP) from the variance adjusted
HadSLP2r dataset, a near real-time update of the Hadley
Centre Sea Level Pressure dataset (HadSLP2; Allan and
Ansell, 2006) is used to form the NAO index (Figure 1a;
NAO index = MSLP[28.5–20�W, 36–40�N] – MSLP
[25–16.5�W, 63.5–70�N]; Dunstone et al., 2016). All other
‘observations’ are from the ERA-5 reanalysis dataset
(Copernicus Climate Change Service, 2017).

Winter 2019/20 forecasts from the original three
C3S (Copernicus Climate Change Service, 2017) sea-
sonal forecast systems are analysed. These are
GloSea5 (UKMO System 14; MacLachlan et al., 2015),
SEAS5 (ECMWF System 5; Johnson et al., 2019), and
System 7 (Météo-France; http://www.umr-cnrm.fr/
IMG/pdf/system7-technical.pdf), and the forecasts con-
tain 62, 51, and 51 ensemble members respectively.
Forty member forecasts from the Met Office Decadal
Prediction System version 3 (DePreSys3, referred to
below as DP3), initialized on first November, are also
analysed. DP3 uses the same global coupled model as
GloSea5, but is initialized and configured differently, as
described in Dunstone et al. (2016).

An additional experiment is also run with DP3, in
which the top 1,000 m of the Indian Ocean temperature
and salinity fields are relaxed towards the negative of the
2019 November IOD anomaly during a five-month spin-
up period (June–October). A climatology formed over the
previous 5 years (2014–2018) is used to reverse the 2019
anomalies, to avoid the complications of climate change
trends. The negative anomaly is simply ‘2019 values – 2 x
climatology’ and is applied over the region shown in
Figure 2b (smoothly ramped at the boundaries to avoid
spatial jumps in temperature or salinity). The atmo-
sphere, however, is nudged identically to the original
DP3 ensemble forecast. A freely running 40 member
coupled ensemble forecast is then initialised in
November using initial conditions from this perturbed-
SST integration (exact details of the method are given in
Section 5 of Dunstone et al., 2019). At this point, the
atmosphere can begin to respond to the perturbed Indian
Ocean temperatures. The ensemble mean difference of
dynamical fields in the original (Orig) DP3 November
forecast and this negative IOD (IOD_Neg) forecast allows
us to investigate the impacts of the IOD around the globe.

These ensembles are referred to below as the ‘IOD experi-
ment’. Using a negative IOD anomaly, rather than clima-
tology, doubles the signal size in this ensemble mean
difference – important in order to resolve the signal over
the noise of internal variability. An implicit assumption
here is that the impacts of the IOD on other parts of the
globe are linear in the strength of the IOD.

3 | RESULTS

3.1 | The winter 2019/20 NAO and
November 2019 IOD

The winter of 2019/20 saw a very strongly positive NAO
(1.5 standard deviations above the 1980/81–2019/20
mean; Figure 1a,b). This pattern was well forecast, from
November, by the C3S systems and by DP3 (Figure 1c–f).
The corresponding higher than average temperatures and
greater than average precipitation over the UK and
northern Europe were also well forecast by all systems.
Due to the signal-to-noise issue (Scaife and Smith, 2018)
currently manifest in most seasonal forecasting systems
(Baker et al., 2018) the ensemble mean signal in all sys-
tems is significantly weaker than that seen in the ERA-5
reanalysis.

The forecasts also captured the sub-seasonal evolu-
tion between months. A negative anomaly in MSLP was
observed over and to the west of the UK in December,
transitioning to a positive NAO in January and February.
As will be seen below (Figure 3) even this detail was well
captured by the seasonal forecast systems. Such a strong
level of agreement amongst dynamical forecasting sys-
tems on the circulation over the Atlantic and European
sector is unusual, and suggests that some common strong
forcing from outside of the North Atlantic-European
domain drove this MSLP response. Strong tropical forcing
is known to exist via teleconnections between ENSO and
the NAO, but ENSO was in a neutral state during winter
2019/20.

The IOD, however, was in an extremely positive
phase in November 2019 (Lu and Ren, 2020). The DMI,
defined in Section 2 and by the green boxes in Figure 2a,
attained its second largest positive value since 1972 (red
line in Figure 2c shows values back to 1979). In particu-
lar, the IOD was exceptionally strong in early winter
(Figure 2d compares this winter against all strongly posi-
tive IOD years). This positive IOD was captured in fore-
casts initialised in November 2019 by all the seasonal
forecasting systems considered here (not shown).

We therefore investigate the potential impacts of the
IOD, beginning by forming composites over extreme
positive/negative values of the DMI using the 40 years
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1979–2018 from the ERA-5 reanalysis. Since ENSO is
known to impact the IOD (Marchant et al., 2007; Liu
et al., 2014), the effects of ENSO are removed as far as is
possible by using linear regression on the Niño 3.4 index
(defined as the area average of SSTs over the region 5�S
to 5�N and 190–240�E with the time average removed;
Trenberth, 1997). In this way, ENSO effects are removed
from both the field over which composites are formed
and from the DMI itself (blue line in Figure 2c). MSLP
composites on the November DMI show a positive NAO
in December–January–February (DJF; Figure 2e). Com-
posites on total precipitation show the corresponding
anomalously high rainfall over the UK and northern
Europe (Figure 2f) and anomalously low rainfall over
southern Europe (Hurrell, 1995), consistent with the
winter forecasts and with that experienced in winter
2019/20.

Whilst these composites are highly suggestive that the
IOD played a major role in European climate this past

winter, composites alone cannot provide evidence of cau-
sality (and only the composite on precipitation is statisti-
cally significant). However, the ‘IOD experiment’
described in Section 2 enables us to do this. The ensem-
ble mean difference between the Indian Ocean SSTs in
the original (Orig) DP3 November forecast and the nega-
tive IOD (IOD_Neg) forecast is shown in Figure 2b, with
the green box indicating the region over which the ocean
was relaxed prior to the IOD_Neg simulations. Compar-
ing Figure 2b with Figure 2a, and noting the contour
levels in Figure 2b are double those in Figure 2a, shows
that the desired IOD anomaly has been generated during
the November of these ensemble forecasts (panels are not
identical since DP3 uses SSTs from Smith and
Murphy, 2007, and is an ensemble mean across month
1 of the ensemble integration). In the sections below, the
IOD experiment is used to diagnose the impacts of the
IOD over the following winter, and thereby investigate
the IOD teleconnection pathways.

(a) (b)

(c) (d)

(e) (f)

FIGURE 3 Tropospheric

pathway. Anomalous v(250 hPa)

(m/s) is plotted in coloured

shading and anomalous MSLP

(hPa) is shown by contours for

December 2019 (left panels) and

DJF 2019/20 (right panels). (a,b)

Observations (ERA-5 anomalies

relative to 2014–2018
climatology), (c,d) ‘Orig –
IOD_Neg’ IOD experiment, and

(e,f) multi-model ensemble

mean forecast using GloSea5,

SEAS5, System 7 and DP3.

Stippling in (c,d) denotes

statistical significance at the 95%

level. Positive/negative MSLP

contours are shown by solid/

dashed lines. The zero MSLP

contour is not plotted. MSLP

contours (hPa) have the same

values as the v250 contours

(m/s). The IOD experiment uses

double the contour values of the

multi-model forecast mean,

since the IOD forcing is doubled.

The observations use four times

the contour values of the multi-

model forecast mean (Scaife and

Smith, 2018)
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3.2 | Tropospheric pathway

Rossby wave propagation from the IOD to the Atlantic is
diagnosed using anomalous meridional velocity at 250 hPa
(v250). Figure 3 shows a wave train originating in the
Indian Ocean, and propagating into the Pacific and Atlan-
tic oceans. Since the only difference in the forcing between
the ‘Orig’ and ‘IOD_Neg’ DP3 simulations is in Indian
Ocean temperature and salinity, panels for the IOD experi-
ment (Figure 3c,d) show, by design, only the signal due to
changes in the Indian Ocean. These panels show a wave
train propagating poleward and eastward from the Indian
Ocean, reaching extratropical latitudes across North
America, before propagating equatorward again. The wave
trains diagnosed from ERA-5 (Figure 3a,b) and the C3S
+ DP3 multi-model mean forecast (Figure 3e,f) are in very
close agreement with the wave train from the IOD experi-
ment, highly suggestive that the Indian Ocean is the key
driver of this observed/forecast wave train. As the wave
train crosses north America it splits into two paths, one
propagating in the mid-latitudes and the other in the high
latitudes. This is most clearly seen in December
(Figure 3a,c), and is consistent with fig. 7 of Fletcher and
Cassou (2015) and with the ENSO tropospheric pathway
(shown in fig. 3b,e,h of Jiménez-Esteve and Dome-
isen (2018)). Once in the Atlantic, the high latitude branch
of this wave train projects onto the observed anomalous
MSLP pattern (also shown in Figure 3). The DJF mean

(Figure 3b,d) is similar, but the wave train for DJF is wea-
ker than that for December. The same conclusions can be
drawn from using geopotential height to diagnose the
wave trains (Figure S1).

In the winter of 2019/20, the observed anomalous
Atlantic MSLP comprises a negative pressure over and to
the west of the UK in December, and a positive NAO pat-
tern in DJF (Figure 3a,b). This distinction between
December and DJF responses is well captured by the IOD
experiment and the C3S multi-model forecasts (compare
Figure 3c,e and d,f).

Thus, although it originates in a different location,
the IOD tropospheric teleconnection pathway is similar
to that for ENSO, consisting of a trans-Pacific-Atlantic
wave train, the high latitude branch of which projects
onto Atlantic MSLP. The wave train also passes over the
location occupied by the climatological Aleutian cyclone
in the North Pacific, implications of which will be dis-
cussed further in Section 3.3.

3.3 | Stratospheric pathway

As alluded to in the previous section, the stratospheric
teleconnection pathway of the IOD to the Atlantic
involves the Aleutian cyclone, and is similar to that
already documented for ENSO (Manzini et al., 2006;
Ineson and Scaife, 2009). Demonstrated best by the IOD

(a)

(b)

(c)

FIGURE 4 Stratospheric

pathway. (a) Anomalous

MSLP(DJF) for the ‘Orig –
IOD_Neg’ IOD experiment

(colours), and anomalous

MSLP(DJF) for La Niña–El Niño
using HadISST (contours with

values 3, 6, 9, 12, and 15 hPa)

equivalent to Figure 1 of Ineson

and Scaife (2009). (b) Planetary

wavenumber 1 amplitude for

‘Orig – IOD_Neg’ IOD
experiment, diagnosed using

geopotential height (40–80�N,
100 hPa). Filled circle denotes

statistical significance at the 95%

level. (c) Anomalous U(60�N) for
the ‘Orig – IOD_Neg’ IOD
experiment. Stippling in panels

(a) and (c) represents statistical

significance at the 95% level
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experiment in the month of December, Figure 3c shows a
Rossby wave train emerging from the Indian Ocean that
leads to poleward flow in the North Pacific near the date-
line, and equatorward flow to the east of this. These two
responses combine to give anomalously positive MSLP
just south of Alaska and the Aleutian Islands. Figure 4a
shows that this MSLP anomaly in DJF is in a very similar
location to that due to ENSO (shown also in fig. 1 of
Ineson and Scaife, 2009). For the single case of winter
2019/20, this signal is evident in early winter, as dis-
cussed below, and again in the DJF mean (Figure 3b) due
to a particularly strong signal in January and February.

As described in Ineson and Scaife (2009), the positive
MSLP anomaly (Figure 4a) acts to reduce the strength of
the climatological Aleutian cyclone and, thereby, reduces
the amplitude of planetary waves propagating upwards
into the stratosphere. Figure 4b demonstrates this

reduction in planetary wavenumber 1 amplitude (diag-
nosed using geopotential height at 100 hPa, area aver-
aged 40–80�N, and then Fourier decomposed; Hardiman
et al., 2008) in the IOD experiment, and is consistent with
fig. 10b of Fletcher and Cassou (2015).

Reduced planetary wave driving in the stratosphere
leads to an anomalously strong stratospheric polar vortex
(defined by U(60�N, 10 hPa) in Figure 4c, and see also
fig. 10 of Fletcher and Cassou, 2015). Anomalously strong
vortex signals propagate downwards into the tropo-
sphere, resulting in a positive NAO at the surface approx-
imately 1 month later (Baldwin and Dunkerton, 1999;
Kidston et al., 2015).

In fact, this positive MSLP anomaly in the Aleutian
region occurs also in November, so reduced wave driving
(Figure 4b) and an anomalously strong stratospheric
polar vortex (Figure 4c) are already apparent in

(a) (b)

(c) (d)

(e) (f)

FIGURE 5 Impact on

Atlantic jets. As Figure 3, except

anomalous total precipitation

(mm/day) is plotted in coloured

shading, and anomalous u

(250 hPa) (m/s) shown by

contours. The U contours are in

intervals ± (a, b) 2, (c, d) 1, and

(e, f) 0.5 m/s, and the zero

contour is not plotted
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November. Indeed, the November polar vortex strength is
anomalously positive in IOD composites, the IOD experi-
ment, ERA-5, and all forecast systems (not shown). Fig. 4
of Nie et al. (2019) demonstrated that an early winter
preconditioning of the stratospheric polar vortex in
November descends through the stratosphere and tropo-
sphere in the following winter months, projecting onto
an anomalously positive NAO in DJF.

4 | DISCUSSION AND
CONCLUSIONS

The winter of 2019/20 was anomalously warm and wet
across the UK and Northern Europe, due to a strongly
positive NAO. The winter was well forecast by the C3S
and the Met Office DP3 seasonal forecast systems. Even
the details of individual months, such as the transition
from the negative pressure anomaly west of the UK in
December to a positive NAO in January/February, were
well forecast by all seasonal systems. Such remarkable
agreement amongst systems is suggestive of the positive
NAO being strongly driven by global influences, and pre-
dictable in this case. In this paper, composite analysis
and numerical experiments are used to identify the very
strong positive IOD event at the start of the winter as the
key driver.

Two teleconnection pathways are identified using an
experiment in which two ensemble forecasts, one with
the observed November 2019 Indian Ocean SST anoma-
lies, and one with the negative of these anomalies, are
produced using DP3. The difference in the ensemble
mean response, shows a Rossby wave train originating in
the Indian Ocean and propagating across the Pacific and
Atlantic Oceans. In the Atlantic, this wave train projects
directly onto the observed Atlantic MSLP anomalies. In
the Pacific, the wave train acts to reduce the amplitude of
the Aleutian cyclone and therefore the amplitude of plan-
etary waves propagating into the stratosphere. This
results in an anomalously strong stratospheric polar vor-
tex, projecting onto an anomalously positive NAO. This
numerical experiment shows good agreement with both
the ERA-5 reanalysis data and the C3S multi-model sea-
sonal forecasts in terms of the details of both tele-
connection pathways. Furthermore, both pathways are
very similar to the well documented tropospheric and
stratospheric teleconnection pathways whereby ENSO
impacts the north Atlantic MSLP (Hardiman et al., 2019).

The impact of the IOD on the Atlantic jet stream and
associated precipitation anomalies is a northward shift in
the jet latitude, a slight increase in the jet strength, and
anomalously high precipitation over the UK and north-
ern Europe, as shown in Figure 5. This is consistent with

an anomalously positive NAO and agrees well with the
features observed in winter 2019/20. There is a remark-
able agreement between the IOD experiment and the
C3S multi-model mean forecast. The signal in the
December observations is noisier (Figures 3a and 5a), but
this is expected, being only a single realisation of a single
month.

A knowledge of the teleconnection pathways between
the IOD and the North Atlantic gives greater confidence
in the seasonal forecast skill they offer. The frequency of
positive IOD events has doubled in the 20th century, and
their intensity has also increased, with this trend projec-
ted to continue (Abram et al., 2020). It is likely, therefore,
that such connections will become increasingly impor-
tant for seasonal forecasting of European winters during
the rest of the 21st century.
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