557 research outputs found

    La via Claudia Augusta a Gazzo Veronese

    Get PDF
    Il contributo presenta i risultati delle ricerche archeologiche condotte dall'Universit\ue0 di Verona a Gazzo Veronese fra il 2014 e il 2017. Lo scavo e il survey si sono concentrati sulla strada romana che partiva da Ostiglia sul Po verso Verona, rivelandone le tecniche costruttive, il percorso e l'inquadramento cronologico

    Localized Magnetic States of Fe, Co, and Ni Impurities on Alkali Metal Films

    Full text link
    X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) have been used to study transition metal impurities on K and Na films. The multiplet structure of the XAS spectra indicates that Fe, Co, and Ni have localized atomic ground states with predominantly d7, d8, and d9 character, respectively. XMCD shows that the localized impurity states possess large, atomiclike, magnetic orbital moments that are progressively quenched as clusters are formed. Ni impurities on Na films are found to be nonmagnetic, with a strongly increased d10 character of the impurity state. The results show that the high magnetic moments of transition metals in alkali hosts originate from electron localization

    Correlated Electrons Step-by-Step: Itinerant-to-Localized Transition of Fe Impurities in Free-Electron Metal Hosts

    Get PDF
    High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d-electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing the host electron density. The effective multi-orbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.Comment: 10 pages, 4 figure

    Modulating the WNT pathway in Drosophila models of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a rare genetic disorder affecting neurodevelopment and the gastrointestinal and musculoskeletal systems. CdLS is caused by mutations within NIPBL, SMC1A, SMC3, RAD21, HDAC8 and BRD4 genes. These genes codify for the cohesin complex (or associated proteins), a multiprotein structure playing a role in chromatid adhesion, DNA repair and gene expression regulation. Our laboratory has shown that a strong correlation exists between cohesin complex function and WNT signalling, an intracellular pathway involved in regulation of expression of several genes controlling cell division and embryonic development. Recently, it has been observed that in nipblb- and smc1a-loss-of-function zebrafish embryos, in NIPBL- and SMC1A- mutated patient fibroblasts and in CdLS murine neural stem cells (NSCs) similar patterns of canonical WNT pathway alterations and cyclinD1 downregulation are present. Indeed, zebrafish embryos adverse phenotype was rescued by chemical activation of the WNT pathway. Drosophila melanogaster is an inexpensive model to study CdLS and to screen in vivo for therapeutic compounds. Therefore, we have used flies\u2019 strains mutated in nipped-B and hdac3 genes (respectively NIPBL and HDAC8 in humans) for assessing the existing correlation between cohesin complex and WNT pathway. Moreover, we have selected D. melanogaster mutants to screen for chemicals that revert the CdLS associated-phenotypes efficiently. In particular, we have tested WNT activators in order to investigate which effects they have on the mutated flies, assessing body weight and changes in brain structures (i.e. mushroom bodies) and possibly select compounds to test on vertebrate models. Funding: This work has been supported by Fondazione Cariplo, grant 2015-0783 to Valentina Massa

    Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells

    Get PDF
    In human prostate cancer (PCa), the neuroendocrine cells, expressing the prostate cancer stem cell (CSC) marker CD44, may be resistant to androgen ablation and promote tumor recurrence. During the study of heterogeneity of the highly aggressive neuroendocrine PCa cell lines PC3 and DU-145, we isolated and expanded in vitro a minor subpopulation of very small cells lacking CD44 (CD44neg). Unexpectedly, these sorted CD44neg cells rapidly and spontaneously converted to a stable CD44high phenotype specifically expressing the CD44v8-10 isoform which the sorted CD44high subpopulation failed to express. Surprisingly and potentially interesting, in these cells expression of CD44v8-10 was found to be induced in stem cell medium. CD44 variant isoforms are known to be more expressed in CSC and metastatic cells than CD44 standard isoform. In agreement, functional analysis of the two sorted and cultured subpopulations has shown that the CD44v8-10pos PC3 cells, resulting from the conversion of the CD44neg subpopulation, were more invasive in vitro and had a higher clonogenic potential than the sorted CD44high cells, in that they produced mainly holoclones, known to be enriched in stem-like cells. Of interest, the CD44v8-10 is more expressed in human PCa biopsies than in normal gland. The discovery of CD44v8-10pos cells with stem-like and invasive features, derived from a minoritarian CD44neg cell population in PCa, alerts on the high plasticity of stem-like markers and urges for prudency on the approaches to targeting the putative CSC

    Pulsed electric field processing of red grapes (cv. Rondinella): Modifications of phenolic fraction and effects on wine evolution

    Get PDF
    Pulsed electric field (PEF) is a non-thermal technology able to promote color and polyphenols extraction from grape skins. Most of the publications about PEF in winemaking report data concerning international varieties, poorly considering minor cultivars and the medium/long-term effects of the treatment on wine composition during storage. PEF was applied at different specific energies (2, 10, and 20 kJ kg\u20131) on grapes of the low-color red cv. Rondinella, after crushing-destemming. Pressing yield, the evolution of color, and total phenolic index (TPI) were measured during skin maceration. Moreover, the wines were characterized for basic compositional parameters, color, anthocyanin profile, phenolic composition (glories indices), metal content (Fe, Cr, and Ni), and sensory characters, two and twelve months after the processing, in comparison with untreated samples and pectolytic enzymes (PE). PEF did not affect fermentation evolution, nor did it modify wine basic composition or metal content. Treatments at 10 and 20 kJ kg\u20131 led to higher color and TPI in wines, in comparison to PE, because of increased content of anthocyanins and tannins. The sensory evaluation confirmed these findings. Modifications remained stable in wines after twelve months. Glories indices and vitisin A content highlighted greater potential stability of wine color in PEF-treated wines

    Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    Get PDF
    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields

    Review of the Scientific Literature on Biology, Ecology, and Aspects Related to the Fishing Sector of the Striped Venus (Chamelea gallina) in Northern Adriatic Sea

    Get PDF
    Striped venus (Chamelea gallina) is one of the most important fish resources on the west coast of the Adriatic Sea. Recently, there has been a widespread die-off of C. gallina populations in Friuli-Venezia Giulia (northern Adriatic Sea, Italy), probably due to unfavorable climatic events. Overall, wild populations have become increasingly rare due to many factors affecting the ecological balance of the species. In this study, the available literature was reviewed to determine the current state of knowledge on the biology, ecology, fisheries, and status of C. gallina populations with reference to populations in Friuli-Venezia Giulia. However, few data are available in terms of peer-reviewed articles; much of it can be found in the gray literature (e.g., project reports, ministerial reports, institutional websites, etc.). However, a critical review of the sources reveals that the species is as endangered as the habitats it inhabits. As a result, conservation and restoration efforts have been undertaken to date as part of some larger project to protect the species. Therefore, considering the ecological and economic importance of this species, the results of the new studies will be useful for the scientific community and will be a key element in the conservation of this species
    • …
    corecore