81 research outputs found

    M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721.

    Get PDF
    M-CSF is known to induce cytoskeletal reorganization in macrophages and osteoclasts by activation of phosphatidylinositol 3-kinase (PI3K) and c-Src, but the detailed mechanisms remain unclear. We find, unexpectedly, that tyrosine (Tyr) to phenylalanine (Phe) mutation of Tyr-721, the PI3K binding site in the M-CSF receptor c-Fms, fails to suppress cytoskeletal remodeling or actin ring formation. In contrast, mutation of c-Fms Tyr-559 to Phe blocks M-CSF-induced cytoskeletal reorganization by inhibiting formation of a Src Family Kinase SFK·c-Cbl·PI3K complex and the downstream activation of Vav3 and Rac, two key mediators of actin remodeling. Using an add-back approach in which specific Tyr residues are reinserted into c-Fms inactivated by the absence of all seven functionally important Tyr residues, we find that Tyr-559 is necessary but not sufficient to transduce M-CSF-dependent cytoskeletal reorganization. Furthermore, this same add-back approach identifies important roles for Tyr-697 and Tyr-721 in collaborating with Tyr-559 to recruit a multimeric signaling complex that can transduce signals from c-Fms to the actin cytoskeleton

    Pregnancy and lactation, a challenge for the skeleton

    Get PDF
    In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density, and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process

    High Sclerostin and Dickkopf-1 (DKK-1) serum levels in children and adolescents with type 1 diabetes mellitus

    Get PDF
    CONTEXT: Childhood type 1 diabetes (T1DM) is associated with decreased bone mass. Sclerostin and dickkopf-1 (DKK-1) are Wnt inhibitors which regulate bone formation. OBJECTIVE: To evaluate sclerostin and DKK-1 levels in TD1M children and to analyze the influence of the glycaemic control on bone health. DESIGN AND SETTING: Cross-sectional study conducted at a clinical research center. Partecipants: One hundred and six T1DM subjects (12.2 ± 4 years), 66 on multiple daily injections (MDI) and 40 on continuous subcutaneous infusion of insulin (CSII), and 80 controls. RESULTS: The average of bone transmission time (BTT) and amplitude-dependent speed of sound (Ad-Sos) Z-scores was lower in diabetics than controls. Significant increased DKK-1 (3593 ± 1172 vs 2652 ± 689 pg/ml, p<0.006) and sclerostin (29.45 ± 12.32 vs 22.53 ± 8.29, p<0.001) levels were found in diabetics respect to controls, particularly in patients on MDI than ones on CSII. Glycaemic control was improved in CSII patients compared to MDI ones (p<0.001) and was also associated to a significant higher BMI-SDS (p<0.002) and BTT-Z-score (p<0.02). With adjustment for age multiple linear regression analysis for DKK-1 and sclerostin as dependent variables showed that levels of HbA1c%, glucose, 25(OH)-Vitamin D, osteocalcin, PTH, years of diabetes, BMI-SDS and AD-SoS-Z-score are the most important predictors (p<0.0001). CONCLUSIONS: Our study highlighted: 1. the high serum levels of DKK-1 and sclerostin in T1DM children, and their relationship with the altered glycaemic control; 2. the effect of CSII on the improvement of glycaemic control and bone health in T1DM children

    LIGHT as regulator of bone homeostasis during osteolytic bone metastasis formation in non-small cell lung cancer patients

    Get PDF
    Tumor necrosis factor superfamily member 14 (TNFSF14), LIGHT is one of the cytokines produced by tumor and immune cells, which promotes homeostasis of lymphoid organs, liver and bone. Nonsmall cell lung cancer (NSCLC) commonly metastasizes bone, altering bone homeostasis and causing osteolysis. Here we investigated the role of LIGHT in NSCLC-induced osteolytic bone disease. The LIGHT expression in monocytes was higher in patients with metastatic bone lesions than in non-bone metastatic ones (66.5 ± 24.5 vs 43.3 ± 25.2 mean ± SD, p = 0.001), in healthy donors (66.5 ± 24.5 vs 8.5 ± 4.6 p = 0.0002), and in non-bone metastatic patients than in healthy donors (43.3 ± 25.2 vs 8.5 ± 4.6, p = 0.0001). Serum LIGHT levels were also significantly higher in bone metastatic patients than in non-bone metastatic ones (186.8 ± 191.2 pg/ml vs 115.8 ± 73 pg/ml, p = 0.04) and in healthy donors (186.8 ± 191.2 pg/ml vs 85.7 ± 38.4 pg/ml, p = 0.04). A neutralizing mAb anti-LIGHT added to osteoclast (OC) cultures of both bone and non-bone metastases inhibited osteoclastogenesis, but the decrease was statistically significant only for bone metastatic patients (272 ± 98 vs 132 ± 74, p = 0.01). To investigate the role of LIGHT in NSCLC- induced bone lesion in vivo, we performed an intratibial injection of a mouse lung cancer cell line LLC-1, in wild-type (WT) and LIGHT KO mice. The WT-injected mice displayed a significant reduction of about 20% for BV/TV, Tb.N, Tb.Th, and Tb.Sp compared to the WT-vehicle mice (pb 0.01). These parameters did not show significant variation for KO-injected mice vs vehicle or for WT-injected mice vs KO-injected mice. These data indicate LIGHT as a regulator of bone homeostasis during NSCLC metastatic invasion, thus it may be a novel therapeutic target in osteolytic bone metastases

    Osteogenic differentiation of mesenchymal stem cells from dental bud: Role of integrins and cadherins

    Get PDF
    Several studies have reported the beneficial effects of mesenchymal stem cells (MSCs) in tissue repair and regeneration. New sources of stem cells in adult organisms are continuously emerging; dental tissues have been identified as a source of postnatal MSCs. Dental bud is the immature precursor of the tooth, is easy to access and we show in this study that it can yield a high number of cells with ≥ 95% expression of mesenchymal stemness makers and osteogenic capacity. Thus, these cells can be defined as Dental Bud Stem Cells (DBSCs) representing a promising source for bone regeneration of stomatognathic as well as other systems. Cell interactions with the extracellular matrix (ECM) and neighboring cells are critical for tissue morphogenesis and architecture; such interactions are mediated by integrins and cadherins respectively. We characterized DBSCs for the expression of these adhesion receptors and examined their pattern during osteogenic differentiation. Our data indicate that N-cadherin and cadherin-11 were expressed in undifferentiated DBSCs and their expression underwent changes during the osteogenic process (decreasing and increasing respectively), while expression of E-cadherin and P-cadherin was very low in DBSCs and did not change during the differentiation steps. Such expression pattern reflected the mesenchymal origin of DBSCs and confirmed their osteoblast-like features. On the other hand, osteogenic stimulation induced the upregulation of single subunits, αV, β3, α5, and the formation of integrin receptors α5β1 and αVβ3. DBSCs differentiation toward osteoblastic lineage was enhanced when cells were grown on fibronectin (FN), vitronectin (VTN), and osteopontin (OPN), ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. In addition we established that integrin αVβ3 plays a crucial role during the commitment of MSCs to osteoblast lineage, whereas integrin α5β1 seems to be dispensable. These data suggest that functionalization of biomaterials with such ECM proteins would improve bone reconstruction therapies starting from dental stem cells

    Effects of recombinant Irisin on the musculoskeletal system of hind-limb suspended mice

    Get PDF
    We previously showed that Irisin, a myokine released from skeletal muscle after physical exercise, plays a central role in the control of bone mass, driving positive effects on cortical mineral density and geometry in vivo (1). Here we demonstrated that r-Irisin treatment prevents bone loss in hind-limb suspended mice when administered during suspension and recovers bone mass when mice were injected after a suspension period (4 weeks) during which they developed bone loss. Micro computed tomography of femurs showed that r-Irisin treatment positively affected both cortical and trabecular bone. As expected, unloaded mice treated with vehicle displayed a remarkable decrease of cortical and trabecular bone mineral density (BMD), whereas in Irisin-treated unloaded mice no loss of BMD was observed with respect to control mice kept under normal loading. Likewise, by treating mice after they already developed disuse-induced bone loss, r-Irisin was able to restore the damaged mineral component. Furthermore, trabecular bone volume fraction (BV/TV), which dramatically decreased in unloaded mice, was prevented by r-Irisin therapy. In particular, r-Irisin treatment preserved the number of trabeculae (Tb.N) and the fractal dimension, an index of optimal micro-architectural complexity of trabecular bone.We also showed that r-Irisin treatment protects muscle mass suffering from atrophy during unloading. Thus, unloaded mice treated with vehicle displayed a severe loss of muscle mass, as confirmed by ~ 60% decline of vastus lateralis weight and ~33% decrease of fiber cross-sectional area. Conversely, Irisin-treated unloaded mice showed no loss of muscle weight and similar fiber cross-sectional area to control mice. Our data reveal for the first time that r-Irisin treatment prevents and retrieves disuse-induced bone loss and muscle atrophy. These findings may lead to develop an Irisin-based therapy for the prevention and treatment of osteoporosis and sarcopenia in all patients who cannot perform physical activity, as occurs during aging and immobility, and it could also represent a countermeasure for astronauts exposed to microgravity during space flight missions.This work was supported in part by ERISTO grant (to M.G.), by MIUR grant ex60% (to M.G.) and by SIOMMMS grant (to G.C.)

    Treatment with r-irisin prevents and recovers disuse-induced bone loss and muscle atrophy

    Get PDF
    Irisin is a hormone-like myokine secreted from skeletal muscle in response to exercise. We previously showed that treatment with recombinant Irisin (r-Irisin) in healthy mice improved cortical bone mass and geometry, supporting the idea that Irisin recapitulates some of the most important benefits of physical exercise on the skeleton and plays protective role on bone health (1). Here we show that treatment with r-Irisin prevented bone loss in hind-limb suspended mice when administered during suspension and induced recovery of bone mass when mice were injected after bone loss due to a suspension period of 4 weeks. MicroCT analysis of femurs showed that r-Irisin preserved both cortical and trabecular bone mineral density, and prevented the dramatic decrease of the trabecular bone volume fraction. Moreover, r-Irisin inhibited muscle mass decline during unloading, keeping proper fiber cross-sectional area. Notably, the decrease in myosin type II expression (MyHC II) in vastus lateralis of unloaded mice treated with r-Irisin was completely prevented. Our data reveal that r-Irisin treatment protects from disuse induced bone loss and muscle atrophy in mice. If these results will translate to humans, they may support a promising clinical strategy for the prevention and treatment of both osteoporosis and sarcopenia, particularly applicable to those patients who cannot perform physical activity, as occurs during aging, immobility and microgravity during space flight missions

    Irisin injected mice display increased tibial cortical mineral density and polar moment of inertia

    Get PDF
    It has been recently reported that, after physical activity, the skeletal muscle releases Irisin, the newly identified myokine able of driving transition of white adipocytes into brown [1]. This result supported the role of skeletal muscle as endocrine organ, suggesting that it could target other tissues besides adipose tissue. In our previous work, we demonstrated that conditioned media collected from primary myoblasts of exercised mice were able to increase OB differentiation and this effect was Irisinmediated [2]. Here we show that Irisin has positive effect on cortical mineral density and geometry in vivo. Young male mice were injected with r-Irisin and cortical bone adaptation was analyzed by micro-CT at tibial midshaft. Our results show that cortical tissue mineral density is significantly increased in Irisin-injected mice compared to vehicle-injected littermates (+7.15%; p<0.01). Furthermore, this higher density of calcium hydroxyapatite at cortical site is accompanied by increase in periosteal circumference (+7.5%; p<0.03) and polar moment of Inertia (pMOI +19,21%; p<0,01). A greater pMOI indicates stronger resistance of a long bone to torsion and, together with higher bone mineral density, suggests higher protection against fracture. The effect of Irisin is fully comparable to the effect of physical activity that is widely accepted method for increasing bone mineral density and bone size in healthy populations. In view of further proving the involvement of Irisin in bone metabolism, we validate its direct effect on osteoblasts in vitro. Phosphorylation of the MAP kinase ERK and the expression of Atf4 were significantly increased after Irisin treatment, as well as ALP and pro-Collagen I mRNA expression. Our data highlight a novel link in muscle-fat-bone axis demonstrating that Irisin targets bone tissue directly, driving positive effects on cortical mineral density and geometry in vivo. These findings would expand the research of exercise-mimetic drugs that might be widely used to treat osteoporotic patients who are suffering from immobilization and cannot perform physical activity

    LIGHT/TNFSF14 affects basal bone remodeling

    Get PDF
    LIGHT (TNFSF14), expressed by different cells of the immune system, binds two trans-membrane receptors: HVEM and LTβR. It is over-expressed in erosive rheumatoid arthritis and lytic myeloma-bone disease and controversial data have been published on its role in osteoclast (OC) formation in vitro. Here, we investigated the role of LIGHT on in vitro murine osteoclastogenesis model and bone phenotype in LIGHT-/- mice. Firstly, we showed that murine macrophages stimulated with LIGHT alone did not differentiate into OCs. Interestingly, the presence of LIGHT and sub-optimal RANKL concentration displayed synergic effects on OC formation through the early and sustained activation of Akt, NFκB and JNK pathways. Secondly, by microCT we found that the femurs of LIGHT-KO mice exhibited a 30% (

    Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated With Childhood Obesity

    Get PDF
    Childhood obesity is associated with the development of severe comorbidities, such as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis and fractures. The status of low-grade inflammation associated to obesity can be reversed through an enhanced physical activity and by consumption of food enrich of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The aim of this study was to deepen the mechanisms of bone impairment in obese children and adolescents through the evaluation of the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible dietary treatment to improve bone health in obese subjects. High RANKL levels were measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01). Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls (p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs) were observed in the un-stimulated cultures of obese subjects compared to the controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+ than controls. Furthermore, in the mRNA extracts of obese subjects we detected a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls, respectively. Each extract of sweet cherries determined a dose-dependent reduction in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of obese PBMCs with sweet cherry extracts from the three cultivars resulted in a significant reduction of the expression of TNFα. In conclusion, the bone impairment in obese children and adolescents is sustained by a spontaneous osteoclastogenesis that can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study opens future perspectives for the use of sweet cherry extracts, appropriately formulated as nutraceutical food, as preventive in healthy children and therapeutic in obese ones
    corecore