217 research outputs found

    Distributed processing and temporal codes in neuronal networks

    Get PDF
    The cerebral cortex presents itself as a distributed dynamical system with the characteristics of a small world network. The neuronal correlates of cognitive and executive processes often appear to consist of the coordinated activity of large assemblies of widely distributed neurons. These features require mechanisms for the selective routing of signals across densely interconnected networks, the flexible and context dependent binding of neuronal groups into functionally coherent assemblies and the task and attention dependent integration of subsystems. In order to implement these mechanisms, it is proposed that neuronal responses should convey two orthogonal messages in parallel. They should indicate (1) the presence of the feature to which they are tuned and (2) with which other neurons (specific target cells or members of a coherent assembly) they are communicating. The first message is encoded in the discharge frequency of the neurons (rate code) and it is proposed that the second message is contained in the precise timing relationships between individual spikes of distributed neurons (temporal code). It is further proposed that these precise timing relations are established either by the timing of external events (stimulus locking) or by internal timing mechanisms. The latter are assumed to consist of an oscillatory modulation of neuronal responses in different frequency bands that cover a broad frequency range from <2 Hz (delta) to >40 Hz (gamma) and ripples. These oscillations limit the communication of cells to short temporal windows whereby the duration of these windows decreases with oscillation frequency. Thus, by varying the phase relationship between oscillating groups, networks of functionally cooperating neurons can be flexibly configurated within hard wired networks. Moreover, by synchronizing the spikes emitted by neuronal populations, the saliency of their responses can be enhanced due to the coincidence sensitivity of receiving neurons in very much the same way as can be achieved by increasing the discharge rate. Experimental evidence will be reviewed in support of the coexistence of rate and temporal codes. Evidence will also be provided that disturbances of temporal coding mechanisms are likely to be one of the pathophysiological mechanisms in schizophrenia

    Inevitable Evolutionary Temporal Elements in Neural Processing: A Study Based on Evolutionary Simulations

    Get PDF
    Recent studies have suggested that some neural computational mechanisms are based on the fine temporal structure of spiking activity. However, less effort has been devoted to investigating the evolutionary aspects of such mechanisms. In this paper we explore the issue of temporal neural computation from an evolutionary point of view, using a genetic simulation of the evolutionary development of neural systems. We evolve neural systems in an environment with selective pressure based on mate finding, and examine the temporal aspects of the evolved systems. In repeating evolutionary sessions, there was a significant increase during evolution in the mutual information between the evolved agent's temporal neural representation and the external environment. In ten different simulated evolutionary sessions, there was an increased effect of time -related neural ablations on the agents' fitness. These results suggest that in some fitness landscapes the emergence of temporal elements in neural computation is almost inevitable. Future research using similar evolutionary simulations may shed new light on various biological mechanisms

    Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks

    Get PDF
    Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons

    Cross-frequency coupling of brain oscillations in studying motivation and emotion

    Get PDF
    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion

    Minimal Size of Cell Assemblies Coordinated by Gamma Oscillations

    Get PDF
    In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25–100 Hz) oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft) lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these experiments.Collaborative Research in Computational NeuroscienceNational Institutes of Health (U.S.) (grant 1R01 NS067199)National Institutes of Health (U.S.) (grant DMS 0717670)National Institutes of Health (U.S.) (grant 1R01 DA029639)National Institutes of Health (U.S.) (grant 1RC1 MH088182)National Institutes of Health (U.S.) (grant DP2OD002002)Paul G. Allen Family FoundationnGoogle (Firm

    Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields

    Get PDF
    Even in V1, where neurons have well characterized classical receptive fields (CRFs), it has been difficult to deduce which features of natural scenes stimuli they actually respond to. Forward models based upon CRF stimuli have had limited success in predicting the response of V1 neurons to natural scenes. As natural scenes exhibit complex spatial and temporal correlations, this could be due to surround effects that modulate the sensitivity of the CRF. Here, instead of attempting a forward model, we quantify the importance of the natural scenes surround for awake macaque monkeys by modeling it non-parametrically. We also quantify the influence of two forms of trial to trial variability. The first is related to the neuron’s own spike history. The second is related to ongoing mean field population activity reflected by the local field potential (LFP). We find that the surround produces strong temporal modulations in the firing rate that can be both suppressive and facilitative. Further, the LFP is found to induce a precise timing in spikes, which tend to be temporally localized on sharp LFP transients in the gamma frequency range. Using the pseudo R[superscript 2] as a measure of model fit, we find that during natural scene viewing the CRF dominates, accounting for 60% of the fit, but that taken collectively the surround, spike history and LFP are almost as important, accounting for 40%. However, overall only a small proportion of V1 spiking statistics could be explained (R[superscript 2]~5%), even when the full stimulus, spike history and LFP were taken into account. This suggests that under natural scene conditions, the dominant influence on V1 neurons is not the stimulus, nor the mean field dynamics of the LFP, but the complex, incoherent dynamics of the network in which neurons are embedded.National Institutes of Health (U.S.) (K25 NS052422-02)National Institutes of Health (U.S.) (DP1 ODOO3646

    Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition

    Get PDF
    Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs

    Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala

    Get PDF
    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories
    corecore