726 research outputs found

    A vector quantization approach to universal noiseless coding and quantization

    Get PDF
    A two-stage code is a block code in which each block of data is coded in two stages: the first stage codes the identity of a block code among a collection of codes, and the second stage codes the data using the identified code. The collection of codes may be noiseless codes, fixed-rate quantizers, or variable-rate quantizers. We take a vector quantization approach to two-stage coding, in which the first stage code can be regarded as a vector quantizer that “quantizes” the input data of length n to one of a fixed collection of block codes. We apply the generalized Lloyd algorithm to the first-stage quantizer, using induced measures of rate and distortion, to design locally optimal two-stage codes. On a source of medical images, two-stage variable-rate vector quantizers designed in this way outperform standard (one-stage) fixed-rate vector quantizers by over 9 dB. The tail of the operational distortion-rate function of the first-stage quantizer determines the optimal rate of convergence of the redundancy of a universal sequence of two-stage codes. We show that there exist two-stage universal noiseless codes, fixed-rate quantizers, and variable-rate quantizers whose per-letter rate and distortion redundancies converge to zero as (k/2)n -1 log n, when the universe of sources has finite dimension k. This extends the achievability part of Rissanen's theorem from universal noiseless codes to universal quantizers. Further, we show that the redundancies converge as O(n-1) when the universe of sources is countable, and as O(n-1+ϵ) when the universe of sources is infinite-dimensional, under appropriate conditions

    Weighted universal image compression

    Get PDF
    We describe a general coding strategy leading to a family of universal image compression systems designed to give good performance in applications where the statistics of the source to be compressed are not available at design time or vary over time or space. The basic approach considered uses a two-stage structure in which the single source code of traditional image compression systems is replaced with a family of codes designed to cover a large class of possible sources. To illustrate this approach, we consider the optimal design and use of two-stage codes containing collections of vector quantizers (weighted universal vector quantization), bit allocations for JPEG-style coding (weighted universal bit allocation), and transform codes (weighted universal transform coding). Further, we demonstrate the benefits to be gained from the inclusion of perceptual distortion measures and optimal parsing. The strategy yields two-stage codes that significantly outperform their single-stage predecessors. On a sequence of medical images, weighted universal vector quantization outperforms entropy coded vector quantization by over 9 dB. On the same data sequence, weighted universal bit allocation outperforms a JPEG-style code by over 2.5 dB. On a collection of mixed test and image data, weighted universal transform coding outperforms a single, data-optimized transform code (which gives performance almost identical to that of JPEG) by over 6 dB

    A mean-removed variation of weighted universal vector quantization for image coding

    Get PDF
    Weighted universal vector quantization uses traditional codeword design techniques to design locally optimal multi-codebook systems. Application of this technique to a sequence of medical images produces a 10.3 dB improvement over standard full search vector quantization followed by entropy coding at the cost of increased complexity. In this proposed variation each codebook in the system is given a mean or 'prediction' value which is subtracted from all supervectors that map to the given codebook. The chosen codebook's codewords are then used to encode the resulting residuals. Application of the mean-removed system to the medical data set achieves up to 0.5 dB improvement at no rate expense

    A Progressive Universal Noiseless Coder

    Get PDF
    The authors combine pruned tree-structured vector quantization (pruned TSVQ) with Itoh's (1987) universal noiseless coder. By combining pruned TSVQ with universal noiseless coding, they benefit from the “successive approximation” capabilities of TSVQ, thereby allowing progressive transmission of images, while retaining the ability to noiselessly encode images of unknown statistics in a provably asymptotically optimal fashion. Noiseless compression results are comparable to Ziv-Lempel and arithmetic coding for both images and finely quantized Gaussian sources

    User Guide for Luminescence Sampling in Archaeological and Geological Context

    Get PDF
    Luminescence dating provides a direct age estimate of the time of last exposure of quartz or feldspar minerals to light or heat and has been successfully applied to deposits, rock surfaces, and fired materials in a number of archaeological and geological settings. Sampling strategies are diverse and can be customized depending on local circumstances, although all sediment samples need to include a light-safe sample and material for dose-rate determination. The accuracy and precision of luminescence dating results are directly related to the type and quality of the material sampled and sample collection methods in the field. Selection of target material for dating should include considerations of adequacy of resetting of the luminescence signal (optical and thermal bleaching), the ability to characterize the radioactive environment surrounding the sample (dose rate), and the lack of evidence for post-depositional mixing (bioturbation in soils and sediment). Sample strategies for collection of samples from sedimentary settings and fired materials are discussed. This paper should be used as a guide for luminescence sampling and is meant to provide essential background information on how to properly collect samples and on the types of materials suitable for luminescence dating. La datación por luminiscencia proporciona una estimación directa de la edad del último momento en el que el cuarzo o los minerales de feldespato se expusieron a la luz o al calor y que se ha aplicado exitosamente a depósitos, superficies rocosas y materiales expuestos al fuego en distintos contextos arqueológicos y geológicos. Las estrategias de muestreo son diversas y pueden ser individualizadas dependiendo de las circunstancias locales, aunque todas las muestras de sedimentos deben incluir una muestra segura que no haya sido expuesta a la luz y material para calcular la tasa de la dosis. La exactitud y precisión de los resultados de la datación por luminiscencia están directamente relacionadas con el tipo y la calidad de los materiales muestreados y los métodos de recolección de muestras en el campo. La elección del material de estudio para su datación debe incluir las siguientes consideraciones en torno a la idoneidad de poder reposicionar la señal de luminiscencia (blanqueador óptico y térmico), la capacidad de caracterizar el ambiente radiactivo que rodea la muestra (la tasa de la dosis) y el que no exista evidencia de una alteración posdeposicional (bioperturbación en suelos y sedimentos). Se discuten las estrategias de muestreo para la recolección de muestras de contextos sedimentarios y de materiales expuestos al fuego. Este artículo debe utilizarse como una guía para el muestreo por luminiscencia y tiene la intención de proveer información básica de cómo recolectar muestras y sobre los tipos de materiales apropiados para la datación por luminiscencia

    A demonstration of within-subjects latent inhibition in the human: limitations and advantages

    Get PDF
    Abstract The magnitude of latent inhibition (LI) (a retardation of associative learning due to prior exposure to the conditioning stimulus) was measured in healthy volunteers using both a within-and a between-subjects version of the task. Reliable LI was demonstrated for the within-subjects paradigm (using a design that fully counter-balanced stimulus of pre-exposure) but the magnitude of the effect was smaller than for the between-subjects version. Measures of schizotypal personality were found to be associated with reduced LI for the between-subjects task, but not for the within-subjects task. We hypothesised that for the within-subjects task learning about the first stimulus-consequence association (usually that for the not pre-exposed (NPE) stimulus) primes learning about the second stimulus, thus reducing the effect of pre-exposure and restricting the range of LI scores. In turn, this restricted range of LI scores does not allow subtle differences on schizotypal personality dimensions to reveal their effect using this withinsubjects paradigm. In conclusion, a within-subjects LI task has been developed which is not open to explanation in terms of differences in stimulus salience. However, the limited range of pre-exposure scores in the current within-subject paradigm may severely limit it is use as an indicator of subtle performance changes.

    A Progressive Universal Noiseless Coder

    Get PDF
    We describe an adaptation of Itoh and Kawabata's universal noiseless coder that allows for progressive transmission of images. The system is based on a tree structure, and codewords stored at internal nodes of the tree allow for early reproductions of the input image. When the encoder reaches a leaf of the tree, it continues transmitting until the compression is lossless. Compression results compare favorably to Ziv-Lempel coding of both images and finely quantized Gaussian sources

    Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides

    Get PDF
    Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (> 4000 m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Oceans. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formally Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss

    Risk assessment of SARS-CoV-2 in Antarctic wildlife

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourismto minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarcticwildlife by considering the available information on host susceptibility, dynamics of the infection inhumans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.Fil: Barbosa, A.. Museo Nacional de Ciencias Naturales; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Varsani, Arvind. Arizona State University; Estados Unidos. University of Cape Town; SudáfricaFil: Morandini, Virginia. State University of Oregon; Estados UnidosFil: Grimaldi, Wray. No especifíca;Fil: Vanstreels, Ralph E.T.. Institute Research And Rehabilitation Marine Animals; BrasilFil: Diaz, Julia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Boulinier, Thierry. Université Montpellier II; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dewar, Meagan. Federation University; AustraliaFil: González Acuña, Daniel. Universidad de Concepción; ChileFil: Gray, Rachael. University Of Western Sydney.; AustraliaFil: McMahon, Clive R.. Sydney Institute Of Marine Science; AustraliaFil: Miller, Gary. University of Western Australia; AustraliaFil: Power, Michelle. Macquarie University; AustraliaFil: Gamble, Amandine. University of California; Estados UnidosFil: Wille, Michelle. University Of Western Sydney.; Australi

    Considering Fish as Recipients of Ecosystem Services Provides a Framework to Formally Link Baseline, Development, and Post-operational Monitoring Programs and Improve Aquatic Impact Assessments for Large Scale Developments.

    Get PDF
    In most countries, major development projects must satisfy an Environmental Impact Assessment (EIA) process that considers positive and negative aspects to determine if it meets environmental standards and appropriately mitigates or offsets negative impacts on the values being considered. The benefits of before-after-control-impact monitoring designs have been widely known for more than 30 years, but most development assessments fail to effectively link pre- and post-development monitoring in a meaningful way. Fish are a common component of EIA evaluation for both socioeconomic and scientific reasons. The Ecosystem Services (ES) concept was developed to describe the ecosystem attributes that benefit humans, and it offers the opportunity to develop a framework for EIA that is centred around the needs of and benefits from fish. Focusing an environmental monitoring framework on the critical needs of fish could serve to better align risk, development, and monitoring assessment processes. We define the ES that fish provide in the context of two common ES frameworks. To allow for linkages between environmental assessment and the ES concept, we describe critical ecosystem functions from a fish perspective to highlight potential monitoring targets that relate to fish abundance, diversity, health, and habitat. Finally, we suggest how this framing of a monitoring process can be used to better align aquatic monitoring programs across pre-development, development, and post-operational monitoring programs
    corecore