177 research outputs found

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    Get PDF
    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability

    Lower and upper probabilities in the distributive lattice of subsystems

    Get PDF
    yesThe set of subsystems ∑ (m) of a finite quantum system ∑(n) (with variables in Ζ(n)) together with logical connectives, is a distributive lattice. With regard to this lattice, the ℓ(m | ρn) = Tr ((m) ρn ) (where (m) is the projector to ∑(m)) obeys a supermodularity inequality, and it is interpreted as a lower probability in the sense of the Dempster–Shafer theory, and not as a Kolmogorov probability. It is shown that the basic concepts of the Dempster–Shafer theory (lower and upper probabilities and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems

    Evolutionary Views on Entrepreneurial Processes: Managerial and Policy Implications

    Full text link
    In this paper we outline an evolutionary framework of entrepreneurial processes where by firms are started, grow, and exit from the market. We explain the important of such a framework in explaining both what contextual factor affects entrepreneurial processes and in explaining the distinction and interaction between self-employment and high-potential entrepreneurship. We highlight the implications from prior empirical work using this evolutionary framework for management and policy making: Three broad implications relevant for managers and entrepreneurs interested in understanding how they can leverage their chances to position their firms as ripe for growth, and six detailed implications relevant for policy makers interested in understanding and affecting the structural conditions where by entrepreneurship can lead to enhanced growth and job creation

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential
    corecore