
RESEARCH Open Access

A mobile and portable trusted computing
platform
Surya Nepal*, John Zic, Dongxi Liu and Julian Jang

Abstract

The mechanism of establishing trust in a computing platform is tightly coupled with the characteristics of a
specific machine. This limits the portability and mobility of trust as demanded by many emerging applications that
go beyond the organizational boundaries. In order to address this problem, we propose a mobile and portable
trusted computing platform in a form of a USB device. First, we describe the design and implementation of the
hardware and software architectures of the device. We then demonstrate the capabilities of the proposed device
by developing a trusted application.

Keywords: trusted computing, trust, trusted computing platform, trusted platform module, trusted personal device

1. Introduction
The idea of developing and deploying applications that
go beyond a single enterprise’s administrative domain
has gained popularity in recent times. This has been
enabled by recent developments and wide-spread adop-
tion of new approaches to software engineering (Web
Services and Service Oriented Architecture) [1], the ubi-
quity of Internet-based networking and the rapid growth
and proliferation of a large variety of mobile computing
devices (e.g. laptops, PDAs). As a result, we have seen a
growing number of enterprise applications developed to
run in heterogeneous, open and potentially hostile envir-
onments by accessing enterprise resources remotely
[2,3]. Though these applications provide greater flexibil-
ity, they present new challenges on establishing a trust
between a remote client computer and enterprise appli-
cation server, more specifically bootstrapping trust in a
hostile environment [4].

Problem statement
An agent, working for a company, is issued a digital cer-
tificate (embedded in software or hardware) against
which the agent is authenticated. The certificate is used
to establish a level of trust between the agent and a
company resource (e.g. a server). When the client-server
link has been authenticated, customized applications

and confidential client data are available for use by the
agent. There are two possible scenarios. The first sce-
nario involves the agent using the machine with a preset
configuration within the company’s managed network.
A digital certificate [5,6], bound to a specific machine
along with an attestation mechanism [7] can be used to
establish trust in a controlled environment such as this.
The second scenario involves the agent working at the
customer’s managed network and uses the Internet to
establish the trusted transactions with the company’s
server. The digital certificate, bound to a specific
machine, can be used to establish the trust provided the
company presets the machine with the desired config-
urations. That is, the agent’s own machine needs to be
used. However, a number of issues on mobility and
portability of trust arise with this scenario if the agent
wants to use any of the client’s machines:

• The certificate is bound to a specific machine thus
making it difficult for the agent to work from any
other client machine. It would be impossible, for
example, to use a client’s machine for accessing
information if the agent then tried to use the certifi-
cate issued to the agent’s machine on the clients
machine.
• When an agent uses the assigned certificate, on an
untrusted host machine, the security of the certifi-
cate is vulnerable to compromise by malicious soft-
ware that may be running on the host machine.

* Correspondence: Surya.Nepal@csiro.au
CSIRO ICT Centre, Information Engineering Laboratory, P.O. Box 76, Epping,
NSW 1710, Australia

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

© 2011 Nepal et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193581549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Surya.Nepal@csiro.au
http://creativecommons.org/licenses/by/2.0

• It is possible for certificate details to be compro-
mised in other ways such as theft or loss. One way
for a company to alleviate these potential security
risks is to periodically revoke old certificates and re-
issue new ones. However, this is a complex opera-
tion to manage with high overheads and especially
so for large numbers of agents operating in the field.
• Downloaded customized applications and confi-
dential data are vulnerable to tackle, since this soft-
ware operates within an untrusted environment, on
the host machine.

This problem has attracted the attention of research
communities [8-13]. The trusted computing group
(TCG) [8] has proposed a trusted computing platform
(TCP) based on the trusted platform module (TPM)
[14] cryptographic microcontroller system. The pro-
posed platform enables the TPM to be a root of trust
for validating both the hardware and software character-
istics of the remote computer in which the TPM is
installed. In the TCG architectures, a remote client
computer can use the remote attestation protocol to
attest to its description of characteristics to the enter-
prise application server [15,16]. To guarantee the trust-
worthiness of the client computer, the description of its
characteristics is signed by the TPM. This solution
works well in the scenario where enterprises manage all
their client computers so that their characteristics are
known to them beforehand and can be attested dynami-
cally. However, there are two inherent issues with this
solution.

• The enterprise systems must have prior knowledge
of the characteristics of all their client computers.
On the one hand, a single image for all client com-
puters may not be a viable solution as different cli-
ents may have different requirements. On the other
hand, the maintenance and management of all client
computers with a variety of configurations that
meets the requirements of TCG attestation protocol
is difficult and challenging.
• The enterprise data and services are now available
to a much wider cross section of users, operating
under unknown computing environments. In many
cases, the users operate beyond a single organiza-
tional boundary.

Recently, there has been a growing interest in addres-
sing this problem from industries. A number of USB-
based solutions have been developed such as IronKey
[9], DIVA [17], EnCryptakey [10] and Gemalto [18].
Although all these solutions are designed to address
above two issues, none of them use the emerging TCP
proposed by TCG. Therefore, they miss all the benefits

that come with the TCG’s trusted computing technolo-
gies such as memory curtaining and protected execu-
tion, sealed storage, remote attestation, and integrity
measurement, logging and reporting [19]. Motivated
with this scenario, this paper proposes a novel solution
based on TCG architectures. The proposed solution
provides a TCP on a USB device so that it enables the
mobility and portability of trust for enterprise applica-
tions. To the best of our knowledge, this is the first
attempt to provide a TCP in the form of a USB device.
Our proposed solution addresses two issues discussed
earlier as follows. The TCP in a USB device (dubbed as
TCP in your pocket) addresses the first issue as enter-
prises can issue such devices with known description of
their characteristics. The second issue is also addressed
as the device can be plugged into a USB port of any
unknown computer and create a known TCP whose
execution environment is isolated from the host
computer.
The rest of the paper is structured as follows. We pro-

vide a motivation for our proposal through a survey of
related work in Section 2. Sections 3 and 4 provide a
review on two important aspects of TCP used in our
solution: the TPM and the TCG remote attestation pro-
tocol. In Section 5, we describe a design and implemen-
tation of the hardware architecture for the proposed
device. This is followed by the presentation of a software
architecture and its implementation in Section 6. Sec-
tion 7 describes an implemented prototype demonstra-
tor for a financial application. We then present the
security and performance analysis of the proposed solu-
tion in Section 8. The final section draws the conclusion
and outlines the possible future works.

2. Motivation and related work
The aim of this section is to provide a motivation for
the proposed USB-based TCP through a review of
related work. The issue of portability and mobility of
trust is not new. A variety of trusted personal devices
(TPD) have been developed, whose physical form factor
ranges from smart cards to USB-based devices. A
detailed survey on the evolution of TPD can be found in
[20]. We first provide an overview on the TPDs and
then review only relevant USB-based devices and their
applications in the context of this article.
Figure 1 shows a broad categories of TPDs. Smart

cards have been around for decades and are used for a
wide range of transaction processing applications,
including mobile communications, bank transactions,
physical and logical access control, network access con-
trol, transportation and digital identity [21]. The privacy
and security aspects of smart cards, for the growing
number of applications in which they are used, are
becoming increasingly important in order to counter

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 2 of 19

malicious behavior such as identity theft and fraud.
However, smart cards use a different protocol from the
ones computers use to communicate with each other
over a network. Because of these protocol differences, a
smart card when connected to a computer cannot talk
directly to a remote machine using the network proto-
cols. The computer must use middleware to do protocol
translation so that the two protocols (i.e. card/computer
and computer/network) can understand each other.
This arrangement is required for example if a smart

card needs to communicate with a remote server on the
Internet; middleware is required either on the host com-
puter or on both the host machine and a remote server.
Furthermore, a smart card needs a card reader and asso-
ciated drivers in order to connect with a computer, but
unfortunately most computers do not have built-in card
readers. Therefore, implementing a smart card solution
requires a supporting infrastructure including card
reader, device drivers and middleware for protocol
translation. These technical constraints provided the sti-
mulus for research into a new generation of smart card
known as the Network Smart Card [22-25] or USB
smart cards [26,27], which talks directly to a remote ser-
vice provider via a host machine’s Internet connection; i.
e. sessions are handled by the network smart card itself
with the host machine providing a network bridge to
the remote server.
The justification for network smart cards, as outlined

above, is clear. However, in the face of the increasing
number of security and privacy threats leveled at the
smart card space, due to the lucrative potential afforded
by fraud, identify theft and all that this entails, a smart
card must also embody trust technology if it is to be
truly considered a TPD. This implies that the depen-
dency of smart cards on the perceived trustworthiness
of public host machines, to which they interface, should

be eliminated and that security, based only on crypto-
graphy and SSL/TLS technology, needs to be augmented
with trust technologies and protocols. In addition, the
security solutions based on USB smart card [26-28] still
need some software (i.e. Host Agent) to run in the host
machines to proxy the communication between the
smart cards and the remote servers. On the one hand, if
the host is untrusted, it is hard to guarantee the integ-
rity of such proxy software. On the other hand, if the
smart card is not trusted by the host owners, the proxy
software might not be allowed to run.
To satisfy these requirements, an alternative breed of

TPD is emerging that specifically addresses the problem
of creating a trusted environment on an untrusted host
using a combination of a TPM to establish a root-of-
trust and virtualization technology supporting virtual
machines that can provide well supported, strong isola-
tion between applications. As network smart cards and
this emerging breed of TPD evolve, utilizing similar
technologies and form factors (e.g. USB token), the
technical distinction between them will become increas-
ingly blurred. As such the dominant distinguishing fac-
tor between these two classes of device will no doubt be
the application scenarios of use. We next focus on the
emerging breed of TPD relevant to our paper.
As part of its Securing the Intelligent Nation initiative,

the Singaporean government has introduced a standar-
dized nationwide security smart token called Digital
Online Registration and Identification System (DORIS)
[29]. This token offers all Singaporean companies and
citizens certified, secure access to government services.
DORIS is implemented as a specialized USB thumb-
drive hardware token. The core of DORIS is a secure
microcontroller, flash memory, and a small radio trans-
ceiver and antenna used for electronic ID and online/
offline authentication.

Trusted Personal
Devices

Smart Cards

Network Smart Card
communication via

Internet Protocol stack
PKI infrastructure

Traditional Smart Card
communication via
dedicated reader
PKI infrastructure

Emerging breed of TPD

Establish trust at boot Establish trust at run
time

Figure 1 A classification of TPDs.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 3 of 19

DORIS suffers from a portability and mobility problem
as it requires an installation of a specific driver. To
address this problem, a software version of the device
was developed, called Dynamic Isolation of Virtualized
Applications (DIVA) [17]. When DIVA is plugged into a
PC, it creates an isolated command window which acts
as a user’s own trusted software execution space to pro-
vide secure access to a wide variety of applications.
Furthermore, the user interacts with the virtual applica-
tion via a Virtual Keyboard to mitigate the risk of key
stroke logging attacks. One of the limitations of DIVA is
that it can only be used on the Windows platform, as it
was built specifically for that environment. Furthermore,
DIVA is a pure software-based solution as compared to
its predecessor DORIS. We have also developed a simi-
lar prototype system based on TCG specification, called
Trust Extension Device (TED) [30]. It uses the type II
virtual machine and emulated TPM. Though it provides
a seamless portability and mobility, it cannot provide
the isolated execution space due to the inherent limita-
tions of type II virtual machine.
In addition to the government services, the need of a

mobile and portable trusted environment is realized in
other application domains including enterprise applica-
tions. In recent times, a number of commercial products
have emerged for enterprise applications. Encryptakey is
a small portable (USB form factor) device that allows
mobile users to create a seamless and secure environ-
ment in which one can perform digital transactions, surf
the Web, conduct business and communicate securely
and privately [10]. Encryptakey is a biometrically
authenticated device which offers multiple-levels of
authentication and comprises its own micro chip, mem-
ory, RFID capability and Bluetooth interface. Encrypta-
key, when plugged into a local computer, unloads the
native operating system of the host machine and down-
loads its own operating system (OS) which it works
with exclusively. In doing so Encryptakey is shielded
from any form of malware (e.g. viruses, key-loggers,
screen-scrapers) that may reside on the OS of the host
machine. Encryptakey embodies the same principle of
isolation for creating a trusted environment on a host
machine similar to DORIS/DIVA. However, one signifi-
cant difference is that Encryptakey must unload the
native operating system to install its own OS. This fea-
ture does not meet the seamless mobility and portability
requirements.
There are other competing industry products from

IronKey [9] and Gemalto [18]. All these products aim to
provide a mobility and portability of trust for a variety
of applications ranging from the secure surfing of the
Web to the secure access to enterprise data. The Iron-
Key uses AES hardware encryption technology and
works with most platforms without the need to install

or modify any software, including the host’s operating
system. Gemalto’s Smart Guardian [18] is similar to
Ironkey in many aspects. A comprehensive comparison
of these products is difficult to achieve due to the una-
vailability of the technical papers related to them.
Although a comprehensive comparison is difficult, a

comparison of high level characteristics is possible.
Referring to the definitions of trusted and trustworthy
systems in [31], we may characterize trustworthy devices
according to the following high level features:

R1 It may be unambiguously identified. That is, it
has a secure, known, verifiable identity.
R2 The device operates unhindered. Its operation
cannot be manipulated so as to behave in an unex-
pected manner.
R3 The device can attest its consistent good beha-
vior, either directly with an interacting entity, or
indirectly, through a trusted third party.

Table 1 shows a comparison of TPDs based on the
above described features. It is clear from the table that
USB-based TCP has a unique feature of attestation sup-
ported by underlying trusted computing technologies.
Summarizing, the growing number of USB-based trust
devices in the market place clearly shows the need,
value and significance of such devices. They are in
demand for a variety of applications from secure surfing
of the Web to secure access to government services. To
the best of our knowledge, none of these devices have
been developed utilizing both the TCG specification and
dedicated hardware TPM chip, as shown in Table 1.
Hence, they miss the benefits of having TCG’s trusted
computing technologies such as memory curtaining and
protected execution, sealed storage, remote attestation,
and integrity measurement, logging and reporting. Thus,
the paper proposes a USB-based TCP that is compliant
with the TCG specification, and demonstrates the feasi-
bility of such device by developing an engineering proto-
type utilizing a dedicated hardware TPM chip. A recent
report [32] analyzes that, to promote the acceptance of
TPM security functionalities, it is desirable to develop

Table 1 Trusted personal device comparison

Device Characteristic

R1 R2 R3

Smartphones, PDAs Y N N

DORIS/DIVA Y N N

Encryptakey Y Y N

Smart cards Y Y N

Network smart cards Y Y N

Mobile and portable TCP Y Y Y

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 4 of 19

useful end-to-end security capabilities that can be used
by end users without additional software development.
The TCP proposed in our paper is providing such
TPM-based security capabilities to end users.

3. Trusted platform module
This section provides a brief review on TPM and its
functionality. The TPM is a cryptographic microcon-
troller specified by the TCG. Figure 2 shows a TCG
TPM architecture. The TPM provides a hardware-
based root of trust, and contains cryptographic func-
tionality to generate, store, and manage cryptographic
keys in hardware. One of the aims of the TPM is to
provide a cost effective way of “hardening” of many of
today ’s commonly deployed applications that pre-
viously relied solely upon software encryption algo-
rithms with keys kept on a host’s disk. Another aim is
for the TPM to provide proof of the integrity of plat-
form through measurement of the platform’s operating
environment (hardware, device drivers, operating sys-
tem, and applications) and attestation of these against
a well-known and carefully defined and maintained set
of characteristics.
As shown in the figure, a TPM includes a Random

Number Generator (RNG). The RNG is used in the
creation of RSA key pairs that are internal to the TPM.
At the time of manufacture, a cryptographic key pair,
known as the Endorsement Key (EK), is generated and
stored inside the TPM chip. The private part of the EK
is held securely by the chip, and is never exposed.
Another important concept in TPM is the root of trust.
The source of the root of trust is the Storage Root Key
(SRK). The SRK is the first key pair generated by the
TPM which is never exported from the TPM. Each sub-
sequent RSA key pair that the TPM generated is bound
to this original SRK.

The private keys are either securely stored in the
TPM. If they need to be stored on a disk, they are
encrypted and exported from the TPM. The encrypted
key can only be securely decrypted internally on the
TPM. This means unencrypted keys are never stored or
visible outside the TPM. The TCG standard version
1.1b [14] specifies that TPM performs the following
functions:

• Key generation: public key functions for key pair
generation using a hardware RNG;
• Cryptography and secure storage: public key signa-
ture, encryption, and decryption to enable secure
storage of data and digital secrets;
• Integrity measurement: storage of hashes that
enable verifiable attestation of the machine config-
uration when booted;
• Unique identity: an EK that can be used to anon-
ymously establish that an identity key was generated
in a TPM; and
• Ownership: initialization and management func-
tions that allow the owner to turn TPM functionality
on and off, reset the chip, and take ownership of its
functions.

The TPM’s RNG generates the seed numbers for the
cryptographic processor’s encryption, decryption, and key
generation functions. The TPM’s non-volatile memory
securely stores encryption keys, including the SRK, EK,
and other sensitive data. The TPM employs conventional
cryptographic operations in conventional ways. The opera-
tions supported by TPM include asymmetric key genera-
tion (RSA), asymmetric encryption/decryption (RSA)
Hashing (SHA-1) and RNG. The TPM uses these capabil-
ities to perform generation of random data, generation of
asymmetric keys, signing and confidentiality of stored

Trusted Platform Module (TPM)

TPM I/O

Non-volatile
Storage

Platform
Configuration

Register

Attestation
Identity

Key Program
Code

Random
Number

Generator

SHA-1
Engine

Key
Generation

RSA
Engine

Opt-inExecution
Engine

Communication

Figure 2 TCG TPM architecture.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 5 of 19

data. The TPM may use symmetric encryption for internal
TPM use but does not expose any symmetric algorithm
functions to general users of the TPM. The Key Genera-
tion component (Figure 2), creates RSA key pairs and
symmetric keys. The SHA-1 hash capability is primarily
used by the TPM to support measurement taking during
platform boot phases and to allow environments that have
limited capabilities access to a hash functions. The Opt-In
component provides mechanisms and protections to allow
the TPM to be turned on/off, enabled/disabled, activated/
deactivated. The execution engine runs program code to
execute the TPM commands received from the I/O port.
Non-volatile memory component is used to store persis-
tent identity and state associated with the TPM. This area
has set items like the EK.
A platform configuration register (PCR) is a 160-bit

storage location for discrete integrity measurements.
There are a minimum of 16 PCR registers. All PCR reg-
isters are shielded locations within the TPM chip. The
decision of whether a PCR contains a standard measure-
ment or if the PCR is available for general use is
deferred to the platform specific specification. An Attes-
tation Identity Key (AIK) is an alias for the EK. The EK
cannot perform signatures for security reasons and due
to privacy concerns. TPMs contain secure non-volatile
storage space that is intended to contain measurements
of system hardware and software status. Measurement
consists primarily of submitting all system software and
hardware to a hash algorithm in a predetermined
sequence. If this measurement is performed when the
system is in a known trusted state, then the resulting
hash can be stored in the TPM and compared to the
result of a subsequent measurement. Any changes will
be detected by the comparison, and appropriate actions
can be taken to prevent execution of modified software
or hardware. This measurement capability can be used
to provide detection of any remote system modifications
resulting from malicious viruses or worms.
The purpose of TPM is to provide hardware-based

digital certificates for establishing trust since software-
based solutions are vulnerable to malicious attacks. TPM
is gaining acceptance by the computing community as a
technology for establishing trust between entities (e.g. cli-
ent-server). Essentially, TPM validation attests to the
trustworthiness of bonafide versions of software and
hardware products operating on a platform.
Summarizing, the purpose of the TPM in the portable

device is to establish a trust relationship between client-
server entities where the goals of trust are to ascertain
that:

• The TPM is the genuine owner of certain crypto-
graphic keys and certificates, i.e. the TPM has not
been tampered with.

• The software operating within the (created) trusted
environment is genuine; which includes validating
secure applications and the operating environment.
• If a device is lost or stolen, then the issuer of the
TPM revokes the manufacturers TPM credentials,
thereby disabling the device from engaging in further
transactions.

4. Remote attestation
Attestation is the process of reporting the measured
platform’s integrity values, and proving that the platform
has a genuine TPM at the same time [33]. The attesta-
tion protocol in version 1.1 of the TCG specification
[14] introduces the concept of a trusted third party, the
Privacy Certifying Authority, or Privacy CA. The Privacy
CA is known and trusted by both the client and applica-
tion service provider. On the other hand, the client (at
least initially) does not trust the service provider, and
v.v. Because of this trust relationship (i.e. client trusts
the Privacy CA; client does not trust the service provi-
der) the client will send its credentials to the Privacy
CA, it will not send it to the service provider directly.
As such, any identity claims made by the client will be
verified by the Privacy CA.
We now move onto an explanation of the TCG

remote attestation protocol through an elaboration of
the steps in Figure 3.

1) A client with a TCG platform requests a service
from a service provider (e.g. for access to a confiden-
tial data information).
2) The service provider’s machine (also with a TPM)
challenges the client’s platform with an attestation
request.
3) Upon reception of this request, the client plat-
form generates an AIK using the TPM function
CollateIdentityRequest.
4) The platform then assembles all the embedded
credentials of its TPM together with the new AIK,
signs the whole with the TPM private EK, and
encrypts it all with the public key of the Privacy CA.
This information forms the identity request. It is
important to note here that the EK cannot be used
to sign arbitrary data, only by some internal func-
tions such as TPM.CollateIdentityRequest. This
means that the owner of a TPM cannot generate a
falsified identity request, and signs it with the EK.
This request is then sent to the Privacy CA.
5) The Privacy CA can decrypt the message using its
private key, and then verifies all the credentials using
the signatures. The Privacy CA knows then that the
EK comes from a real TPM. By verifying the signa-
ture of the message with the public Endorsement Key
(which is contained in the endorsement credential),

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 6 of 19

it can be sure that the request is issued from the
TPM which possesses this particular EK. The privacy
CA will now generate a certificate (called Identity
Credential) containing the public part of the AIK,
signed with its private key, to attest that the TPM is
genuine. This certificate is encrypted with the public
part of the EK of the service consumer. This certifi-
cate is called an Identity Credential. The Identity Cre-
dential is then sent to the service requester/consumer
(that has TCG platform).
6) The platform then prepares an attestation mes-
sage which includes signed PCR values and identity
credentials. The signed value is generated using a
specific function TPM.Quote and the credential is
retrieved using a function TPM.ActivateIdentity.
This means the platform cannot generate fake attes-
tation message. The message is then sent as a
response to the application server.

Several problems have been identified related to this
protocol, and are being examined and addressed in cur-
rent efforts within the TCG and elsewhere. These pro-
blems are related to the difficulty in measuring a
platform configuration accurately, and comparing it
against a well-known and standard configuration. In
today’s complex systems, composed of large numbers of
interconnected heterogenous computing environments,
performing an integrity measurement is almost mean-
ingless unless there is very strict control on the hard-
ware, operating systems and applications. These
problems are driving further research activities in
remote attestation, and well-known examples include
Direct Anonymous Attestation [34], Semantic Remote
Attestation [35], Property-based Attestation [36], and
Fine Grained Attestation [37].

BIND, for example, uses a technique that attests only
the critical code immediately before it executes. A sand-
boxing mechanism similar to Secure Kernel found in
AMD’s Secure Execution Mode (SEM) [38] to protect
the execution of the attested code. It can detect the
changes of attested code at runtime caused by buffer
overflows or string malformation. Another approach
was taken by Terra [39]. Terra attests the Trusted Vir-
tual Machine Monitor (TVMM) which then is used to
partition the platform into multiple isolated Virtual
Machines. Here, because the TVMM is so small and
uniform, the attestation can proceed easily and in a
manageable manner.
The TCG remote attestation protocol is designed to

establish one-way trust relationship. We refer to this
protocol as a message-based attestation protocol, as it
was designed to be run for each message exchanged
between the end hosts. We make the following observa-
tions, based on our experiences in using the protocol in
our system. First, it is inefficient, as the number of pro-
tocol (overhead) messages per application message is
high (of the order of eight pairs of protocol messages
per application message). Second, the difference in the
time at which the attestation is completed and the time
at which it is used to send the application message
makes it vulnerable to attack. To overcome these short-
comings in this application scenario, we propose a ses-
sion based mutual attestation protocol [40]. Yoshiham et
al. [41] present a similar proposal called WS Attestation,
where they presented an attestation architecture that
can be used in Web Services environment.
We now move onto the design and development of

mobile and portable TCP utilizing the concepts outlined
in the above two sections (namely, the use of the TPM,
and remote attestation, in trust establishment).

TPM

Trusted Computing Platform

Provider

Privacy CA

PCR

AIK

Pub Key
Priv Key

EK
Pub Key
Priv Key

1. Request

2. Challenge

4. Identity Request

5. Identity Credential

7. Challenge Response

3. Create AIK

6. Sign

Figure 3 A TCG attestation protocol.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 7 of 19

5. Design and implementation of hardware
architecture
This section first draws the design requirements for a
USB-based TCP based on the discussion in Section 2,
then presents a reference hardware architecture and
closes with an implementation of the proposed device.
We start with the following high-level design require-

ments for the device.

Dimensions
The device dimensions should be small and portable,
preferably USB thumb drive size. It was decided that the
dimensions (width, length and thickness or height) of 18
mm × 58 mm × 10 mm would be ideal.

Cost
The device must be cheap enough to be disposable if it
has been compromised or lost. The device is meant to
be issued to a select set of its clients, but still controlled
and managed by an issuing enterprise.

Physical connection
The device connects to any host PC using a USB 2.0
compliant type A plug.

Electrical requirements
The device uses the host computer’s USB port for
power, supplying 4 USB units of current (400 mA) at
the nominal USB VBUS voltage (5 Vdc).

Internet connectivity
The device establishes Internet network connectivity via
the USB port. Internet connection to remote servers
must be secured using 128-bit SSL or better.

No host interference
The host computer needs to keep operating uninter-
rupted when the device is inserted and booted. This is
unlike some other trusted platforms that require the
host to be shut down before trusted device was inserted
into the USB port and then rebooted from the USB
attached device.

Device insertion and removal robustness
The device may be inserted and removed at any time
(including device boot, mid-transaction, or conclusion of
transaction session) without adversely affecting either
the host PC, or the device itself.
As per the above requirements, Figure 4 shows our

high-level reference design of a USB-based TCP con-
taining a TCG TPM. The most notable difference
between our reference platform to that of TCG PC
reference platform [8] is that (1) the device does not

have any user input or output devices such as a display
or keyboard and (2) there is only a single physical net-
work interface to the device, namely the USB port.
Our goal was to achieve a hardware implementation

that stays as close as possible to the reference platform
shown in Figure 4. Our aim was to show the feasibility
of the idea through the development of a concept
demonstrator. Given the time to develop, integrate and
test the hardware and software systems, it was decided
very early in the project to base the implementation on
an existing embedded hardware platform. We investi-
gated various embedded systems using the following cri-
teria: good support for a version of the Linux operating
system; development tools that allow easy development;
a USB form factor and a significant community of users
and developers. These criteria lead us to the select of
the Gumstix Overo Earth Computer-on-Module (COM)
[42]. The development kit associated with this product
features a motherboard that carries the Gumstix Overo
Earth COM as a daughterboard, and offers a rich variety
of interfaces: a USB OTG port, two mini USB serial
(terminal) ports, control and status ports and some forty
general purpose input/output ports that can used for a
variety of uses, including interfacing to the TPM chip
and providing clock and data input and output.
Using this development kit allowed us to quickly pro-

totype a secondary “TPM only” board that connected to
the development kit motherboard, and allowed the soft-
ware development to progress without waiting for the
final design and implementation of a small, USB form-
factor motherboard.
Figure 5 shows the implementation hardware architec-

ture for the proposed device. As mentioned above, the
device replaced the development kit and attached sec-
ondary prototype “TPM only” boards with a single,
USB-form factor motherboard, that connects the Gum-
stix Overo Earth COM via two 70-way low profile AVX
connectors. The motherboard carries the TPM chip,
clock generation, voltage regulators and logic level con-
version (to allow interfacing between 1.8, 3.3 and 5 V
logic levels) circuitry, a USB plug with input protection
circuitry and two low profile 70 pin EVX sockets.

Host
Computer

USB Trusted Computing Device

USB
Plug

Type A
U

SB
Controller

Power Supply

Controller

RAM

Boot ROM

CPU TPM

Embedded
Devices

USB
Socket
Type A

Figure 4 A reference USB platform containing a TCG TPM.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 8 of 19

Figure 6 shows the completed hardware device, as
viewed from the component side of the motherboard.
Given that the implemented device has no (usual) user
interface, the motherboard design included two status
information LEDs, one indicating that the system has
power, and the other that the device has successfully
booted.
The motherboard components are divided into two

major subsystems: the TPM subsystem and power sup-
ply subsystem.
The TPM subsystem consists of the TPM chip itself,

logic level shift circuitry to interface the TPM chip’s 3.3
V logic to the Overo Earth COM 1.8 V logic, a TPM
reset circuit and a timing oscillator for the TPM chip.
The selection and sourcing of the TPM chip was

somewhat unusual, as the system implementation was
on a commercial embedded computer, rather than a
general purpose PC. This meant that there were restric-
tions on the type of TPM chip that could be used. Most
of the widely available TPM chips are meant to be inte-
grated into a general purpose PC (whether it be laptop
or desktop), and connected via the PC’s own internal
LPC bus [43]. Unfortunately, commercially embedded

computers do not use this bus to interconnect the var-
ious devices found on an embedded computing plat-
form. They do however offer a large number of serial
(GPIO) [44] interfaces and that in turn meant that the
design had to rely on a serial bus version of a TPM
chip–the Atmel AT97SC3203S0-X9A20.
One of the most critical design factors was that the

device must meet the stringent insertion and removal
robustness requirement. The device was meant to be
plugged into and unplugged from the USB 2.0 ports on
a variety of computers without causing unexpected
behaviors in either of the device or the host computer.
There are many factors that need to be considered in
the design: the speed and method at which the device
insertion occurs; the reliability and cleanliness of the
physical contacts; the ability of the host computer to
supply “clean” USB 2.0 power at the required 400 mA at
5 Vdc; whether the removal of the device is during a
particularly critical part of the device boot process;
whether the removal of the device occurred during a
critical transaction and so on.
Irrespective, under all insertion and removal events,

the device hardware and software was not permitted to
enter into an unexpected state, and could not cause
interruptions to the host computer.
The approach taken in the final design and its imple-

mentation was to ensure that all power supply transi-
ents caused by the physical insertion (and removal) had
decayed to sufficient levels so that the power supply
subsystem regulators were presented with as clean a vol-
tage/current supply as possible. It was only after the
transients had decayed, and the regulators finally were
operating at nominal capacity that the power supply
subsystem could then switch itself into supplying power
to the Overo Earth COM and to the TPM subsystem.
We noted that there are two classes of transients of

concern to this type of device. First, is the short lived,
high voltage, high current electrostatic discharges to the
device. The second type is much longer lived transient,
where the power being supplied is extremely noisy due
to the physical insertion of the device into the USB
port. In this case, both the voltage and current supplied
is highly unpredictable until reliable physical contact is
finally established.
Our power supply subsystem design overcame these

two types of transients by providing two levels of pro-
tection as outlined below. The power supply subsystem
consists of USB port electrostatic discharge protection
circuitry, a power sequencing circuit, and three separate
voltage regulators. The combination of the USB port
protection circuitry and power sequencing circuits elimi-
nated both the short electrostatically induced transient
currents and the longer duration, multiple voltage tran-
sients that occur when the device is first physically

USB Trusted Computing Device

Motherboard

Daughterboard (Overo Earth COM)

Host
Computer

USB
Plug

Type A

U
SB

Controller

Power Supply

Controller

RAM

Boot ROM

CPU

TPM

Embedded
Devices

USB
Socket
Type A

70 way AVX70 way AVX

70 way AVX70 way AVX

Figure 5 An implementation architecture of USB trusted
platform computing device.

Figure 6 A picture of USB TCP device.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 9 of 19

connected to the host computer. These two protection
circuits assured that each of the three regulators and
subsequent connected components (including the Overo
Earth COM and TPM chip) had “clean” power supplies
when the device is first connected into the host compu-
ter, allowing the entire device to enter a stable, repeata-
ble boot sequence.
The first of the regulators supplies a 1.8-V reference

voltage level to the logic level translation between the
Overo Earth COM and the TPM chip. As it supplies
only a reference level, the power requirements were
small and so a Torex linear low-dropout regulator
(LDO) XC6204 in a SOT-25 package was selected. The
second and third regulators both supply 3.3 V. The first
of the 3.3-V regulators, a Torex XC6203 (again, linear
LDO) in a SOT-89 package supplied power (3.3 V at 55
mA) to the TPM chip on the motherboard. The second,
much larger capacity 3.3 V regulator supplied 250 mA
required by the Overo Earth COM daughterboard.
Because of the demanding power requirements, a Linear
Technology LTC3405 switch mode (synchronous step)
regulator was selected in a S6 package. This device is
able to supply up to 300 mA at 3.3 V to the Overo
Earth COM. The decision to use two separate 3.3 V reg-
ulators rather than a single regulator was based on con-
sidering the power requirements and the dimensional
constraints of the prototype device. Choosing a larger
single regulator (in place of the current two) was prohi-
bitive due to the height restrictions placed on the device
dimensions (including the housing). The larger single
regulator package (that was able to supply power to
both the TPM and Overo Earth COM) was outside of
the maximum height requirements specified, although
the package footprint presented on the printed circuit
board was similar to the LTC3405.
A total of six prototype devices were produced and

tested. Each of the prototype devices underwent thor-
ough and rigorous testing scheme that examined maxi-
mum power usage, noise sensitivity, multiple insertion
and removal events at random times, long term power
consumption and device functionality, and a variety of
operational tests. All six prototypes have been used and
successfully demonstrated in a variety of applications
and situations. These include two live demonstrations at
international conferences and three days at CeBIT Aus-
tralia, where two of the devices were plugged and
unplugged at random times during the three days of the
public exhibition, and always operated correctly.
Once again, we believe that the careful attention to

the demands of having a stable power supply in a highly
dynamic and unpredictable environment, where the
device can be plugged and unplugged into any host USB
port resulted in the hardware devices’ ultimate “good
behavior”.

6. Design and implementation of software
architecture
Our platform is a portable embedded device and needs to
support both native and external applications. While
designing the software architecture, we made some stra-
tegic decisions to ensure that efficiency, access by a vari-
ety of applications, and portability were not compromised
in any way. Figure 7 shows the software architecture of
our platform, with the components described in the fol-
lowing section. Underpinning the system software is the
embedded operating system, based on an optimized
Linux kernel (v 2.6.29) which includes USB, I2C and
TPM device drivers. All compilation and configuration of
the kernel is done through the OpenEmbedded (OE)
development environment. As mentioned, the prototype
has a specially reduced, customized kernel so as to
improve its power efficiency, responsiveness and boot up
speed.
The USB driver allows the platform to appear to cli-

ents as an IP network device. We have used the popular
Linux USB Ethernet/RNDIS gadget driver in the kernel
module. Adopting this approach meant that the plat-
form can be easily connected to most operating systems
such as Ubuntu Linux, Apple Mac OS × and Windows.
This module establishes a Remote Network Device
Interface Specification (RNDIS) link between the plat-
form and the client, upon which TCP/IP is used. The
platform runs a lightweight DHCP server, which dyna-
mically assigns an IP address to the host. Through this
IP link, the USB based trusted device can communicate
with other machines on the network.
The TPM chip is connected to the embedded CPU via

the I2C bus. The I2C device driver and TPM driver is
used by the TPM library to access the TPM chip. The
I2C driver makes the TPM chip appear as a device file
in Linux, and the TPM driver maintains the I/O state of
the device file. The TPM driver provides operations
tpmSend and tpmReceive to send and receive data from
the TPM chip. If the device file is closed, the TPM dri-
ver initializes the device, and then opens the device file,

Embedded CPU

External
Applications

TSS Server
Native

Applications

Lightweight TSS Library

Embedded
Operating SystemTPM Driver

I2C Driver

USB
Extension

TPM
Extension

USB Driver

Figure 7 The layered software architecture.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 10 of 19

which is then ready to be read and written. The TPM
driver can also output the raw bytes to and from the
TPM chip for facilitating debugging.
The TPM library provides the operations to handle

TPM commands. The main operation takes as the input
a command name and the command parameters,
returning the result received from the underlying TPM
chip. The TPM library also provides an interface file,
which explicitly describes the parameter and output
structures for each command. For example, the inputs
for the command TPM.Sign includes a key handle for
the signing key, the usage authorization for the key, the
data to be signed and its size, and the output of this
command includes the signed data and its size.
To process the TPM commands efficiently, we made

the following two-design decisions. First, we adopted a
template-based TPM command construction. The TPM
library prepares a command template for each TPM
command in the runtime stack. When issuing a TPM
command, it replaces the template with the correspond-
ing parameters without allocating new memory in the
heap. Second, we only implemented a subset of TPM
commands that are suitable for a portable trusted plat-
form. For example, our TPM library does not create
migratable keys when using the command TPM.Create-
WrapKey since the device is already a portable device.
One important and particularly difficult part of hand-

ling TPM commands is to generate correct input and
output authorization. With incorrect authorization, the
commands cannot be executed by the TPM chip nor
the output be correctly accepted. It should be noted
that some TPM commands do not need authorization,
while others may need one or two authorization han-
dles. The TPM library provides several operations which
can automatically generate or check authorization bytes,
hence making it easier to deal with TPM command
authorization. Using these operations greatly improve
the correctness of command authorization and the
development efficiency.
At the top of the supporting software architecture is

the Trusted Software Stack (TSS) library and the TSS
server. The TSS is a specification defined by TCG [45],
describing the TPM commands and other cryptographic
operations for the application developer. We have
designed a lightweight TSS library as the portable device
may not need a library similar to a general-purpose
device such as PC. The main operation in our TSS library
is to support remote attestation. This operation involves
the TPM commands TPM.MakeIdentity for creating an
AIK, and TPM.ActivateIdentityKey for activating the
identity certificate receiving from the Privacy CA.
The portable trusted device needs to support two

types of applications: native and external. We refer
applications that run within the operating environment

of portable trusted device and need to be measured for
attestation purpose to as native applications. The appli-
cations that run outside the portable trusted device, but
use the TPM in the portable trusted device are referred
to as external applications. For example, an enterprise
Web-based applications may use portable trusted device
for authentication purpose. We have defined TSS server
to support such external applications.
The TSS server is a daemon that allows external Web

applications to access the platform’s TPM functional-
ities. The TSS server provides TPM functionality to
Web-based applications by embedding the commands in
HTTP, while device local applications are able to
directly access the TSS library as designed by the cur-
rent TCG specification.
For example, when an application wants make a TPM

AIK, it posts a HTTP request with the parameter
tedcmd taking the value assigned to the operation of
making AIKs. We demonstrate the use of this architec-
ture by developing a Web application in the next
section.

7. Design and implementation of application
scenario
Figure 8 presents a high-level enterprise architecture
showing how a USB-based TCP is meant to be used,
and the components that are required to support it.
There are three components involved in running an
application based on the USB-based TCP. In a typical
use scenario, a USB-based TCP is plugged into an
unknown host computer. Depending on the application
selected, the host computer may also be used to allow
the user access to a variety of Input/Output interfaces
such as a screen display and keyboard/mouse. Note that
they are not a part of the USB-based TCP reference
platform as shown in Figure 4. The Privacy CA validates
a USB-based TCP’s characteristics to a remote party by
running a TCG attestation protocol. This means all

USB-based
Trusted Computing

Platform

Host Machine

Privacy CA

Application Server

Figure 8 A reference enterprise architecture for USB-based TC
platform.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 11 of 19

devices’ characteristics are known to the Privacy CA.
The application server hosts an application that USB-
based TCP uses to process any critical transaction.
Based on the above enterprise architecture, we have

developed a small demonstration application that exer-
cises most of our USB-based TCP’s capabilities. Our
demonstrator uses a familiar banking transaction sce-
nario which allows a customer to view account balances
and transfer money from one account to another after
successful authentication took place. The layouts and
technologies used in our demonstrator are shown in
Figure 9.
Our USB-based TCP contains a mini Web server,

developed in-house, that contains sufficient functionality
to process SOAP formatted HTTP request/response
messages. Similarly, we also have another mini Web ser-
ver running on the Privacy CA component. These mini
Web servers enable us to conduct driverless communi-
cation among the components in our enterprise archi-
tecture using standard Web languages such as HTML,
JavaScript, and AJAX. The application server hosts our
banking demonstration written in JSP. The Apache
Tomcat Server and Apache Axis engine are also
installed in our application server to support Web-based
services. Java Objects are used in the application server
to provide database functionality to allow us to store the
banking information for each customer. We developed
our own in-house Privacy CA as a standalone Java
application.
When the device is plugged into the host machine,

it allocates a link local IP address to it, used for

communication between the local host and the device.
When a user types a URL to access services from the
application server, the host machine becomes aware of
the IP address of the application server. However, the
USB device and application server are unaware of each
other’s IP address as the current addresses are local.
We solved this issue by designing a Web page with
embedded JavaScript code that performs as an address
proxy. We next describe the design and implementation
of the Web page in the context of the attestation proto-
col, and include some code snippets to illustrate the
important points.
Figure 10 illustrates the overall Web page compo-

nents. A JavaScript-based proxy is embedded in the
main page. The proxy is basically a listener that watches
for any incoming or outgoing messages. The main page
itself contains two iframe tags. Each iframe uploads
HTML files that are located on the portable device and
the Privacy CA. These files are loaded when the main
page is rendered by the client browser. Once loaded, the
JavaScript proxy code associated with the main page
starts executing, allowing communication by both the
device and Privacy CA to the application server.
The mobile and trusted platform operating within this

scenario operates as follows.

1) A customer plugs in the TCP device into the USB
port on an untrusted host PC. When the device is
plugged in, it draws power from the host PC and
boots its operating system. It then loads libraries and
applications as shown in Figure 7.

Privacy CA

Application Server (Bank Demo)

Web Client
HTML

JavaScript
AJAX

Mini Web Server

Web Browser

Application Firew
all

Web Server
Tomcat 6.0.4

Web Services
Server
AXIS 1.4

Client Tier
HTML

JavaScript
AJAX

Web Tier
JavaScript

Information Tier
Java Objects

Web Server
Mini Web Server

Application Tier
HTML

JavaScript
AJAX

Web Client
HTML

JavaScript
AJAX

Figure 9 The layout and technologies used for trusted application demonstrator.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 12 of 19

2) The customer uses a known, secured browser to
access the bank’s application through a URL. The
main page contains two iframes as follows.

<iframe src=<%=pcaURL%>
/privacyCA.htm id="caFrame"/>

<iframe src=<%=tedURL%>
/ted.htm id="tedFrame"/>

The first iframe is designed for privacy CA and the
second for the TCP device.

3) When the main page is rendered, two HTML
pages, privacyCA.htm and ted.htm, are uploaded
connecting the application server to the device and
privacy CA. The user then performs a simple name/
password authentication with the application server
via HTTP message to the application server as a
part of a login request.
4) If the customer authentication based on user-
name/password succeeds, a challenge message is
issued by the application server containing a random
nonce. Thus communication is handled by the fol-
lowing JavaScript fragment:

function sendChallenge (nonce) {
var win = document.getElementById

("tedFrame”).
contentWindow;
win.postMessage

(nonce,+ < % = tedURL% > +);
}

5) Upon reception of the challenge message, the
USB device uses the loaded TSS library to gather its
proof of identity which is then sent to the Privacy
CA. The proof of identity is signed by TPM. This
step is performed as follows.

a) The challenge message is received by the even-
tListener contained in the ted.htm on the device.
window.addEventListener

("message”, toTED, false);

function toTED(e) {
server = e.origin;
xmlhttp = new XMLHttpRequest ();
var head = e.data.substring

(0, 9);
var body = e.data.substring

(9, url.length);
}
b) The device creates an AIK key and constructs
a special data structure called an IdenityProof.
The IdentityProof contains two important data:
Endorsement Key (EK) and identity-binding sig-
nature. The EK uniquely verifies a genuine and
unique device.
c) The identity-binding signature contains a pub-
lic part of AIK key, user identity, and public part
of Privacy CA key which then is signed by the
private part of AIK key. The identity-binding sig-
nature verifies the newly generated AIK which is
from a legitimate device.
d) The device generates a session key S to encrypt
the IdentityProof. The session key S is encrypted
by the privacy CA’s public key. They are then
sent back to the main page using the script (part
of the function toTED(e)) in the main page.
xmlhttp.onreadystatechange =

fromTED;
xmlhttp.open ("POST”, head, true);
xmlhttp. send (body);
function fromTED () {
if (xmlhttp.readyState = = 4)
top.postMessage
(xmlhttp.responseText, server);

}
6) The main page forwards the encrypted Identity-
Proof to the privacy CA via the following javaScript
proxy code:

window.addEventListener("message”,
function(e){

...
var fr1 = document.

getElementById("tedFrame”);
fr1.contentWindow.postMessage

(e.data, < % = pcaURL% >);
...
}

7) The Privacy CA verifies the proof of identity of
the USB-based TCP. It creates an identity credential
when the verification is successful and sends it back
to the USB-based TCP. This is achieved as follows.

a) The Privacy CA receives the encrypted Identi-
tyProof using the javaScript contained in the pri-
vacyCA.htm.
window.addEventListener

<script>

Forwards data
....
....
....
</script>

<script>

Forwards data
....
....
....
</script>

<script> // Proxy Script

1. Listens for any incoming
responses

2. Co-ordinates message
exhange

....

....

</script>

<iFrame <src ted.htm> ... />
<iFrame <src privacy.htm> ... />

ted.htm
(on portable device)

index.htm
(on application server)

privacy.htm
(on Privacy CA)

Figure 10 HTML and JavaScript design for web-based
communication.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 13 of 19

("message”, toPCA, false);
function toPCA(e) {
server = e.origin;
xmlhttp = new XMLHttpRequest ();
var head = e.data.substring

(0, 9);
var body = e.data.substring

(9, url.length);
}
b) The privacy CA uses its private key to decrypt
the session key SS. Using the session key S, it
decrypts the IdentityProof. The EK and identity-
binding signature contained in the IdentityProof
structure are inspected to verify that the Identity-
Proof was created by the genuine TPM.
c) After the validation, the privacy CA creates an
AIK digital certificate that contains the user
identity and signs it to maintain its integrity. The
privacy CA creates a new session key Q to
encrypt the signed AIK digital certificate,
denoted as symBlob.
d) To maintain the integrity of the session key Q,
the privacy CA creates an asymmetric blob,
denoted as asymBlob. The asymBlob contains the
session key Q and the hash value of AIK public
key. The asymblob is encrypted by the public
part of the EK. This is sent to the main page
using the similar javaScript described in the step
5.

8) The main page forwards the privacy CA’s
response to the device using the similar javaScript
used in the step 6. Using the identity credential
received from the privacy CA, the device activates its
identity which obtains assurance that the identity
credential is actually for this particular device. This
step is done as follows.
The device uses its private part of the EK to decrypt
asymBlob. From the decrypted asymBlob, the device
recovers the session key Q and the hash of AIK pub-
lic key is validated. If AIK public key hash is correct,
the device decrypts the symBlob and retrieves the
AIK digital certificate using the session key Q.
9) After the activation, the device runs another
operation that quotes the description of its charac-
teristics to prove the device only runs legitimate
software free from running any malicious malware.
10) The USB device’s identity credential and the
description of its characteristics resulting from quot-
ing process is then sent back to the application ser-
ver via the main page using the JavaScript described
in the step 5.
11) After the application server verifies both USB
device’s hardware platform state, represented by iden-
tity credential, and the software state, represented by

the description of its characteristics, the private data
for the banking customer, such as balance of
accounts, is finally displayed on the host machine’s
screen as shown in Figure 11. The validation process
works as follows.
12) Upon receiving the AIK digital certificate, the
application server checks the validity of AIK certifi-
cate by verifying it with the public key of privacy
CA. For a valid certificate, the application server
checks whether the user identity specified in the
AIK certificate matches the userID received earlier
in the step 3. If they match, the application server
knows that the digital certificate owner is the one
who is logged in.

8. Security and performance analysis
This section presents a security and performance analy-
sis of the proposed solution. First, we analyze the pro-
posed solution against a number of threat models’
scenarios and then present an initial performance
analysis.

8.1. Theft of user name and password
It is possible that the host machine of the device is com-
promised by malware. This allows the attacker to be
able to intercept user name and password, perhaps
through the hacked browser cookies or monitoring host
machine input channels such as keyboards or mouse.
The attacker can use the stolen user name and password
to access the bank application server. However, the bank
application server in our system will request an AIK
digital certificate upon log-in request. Since the AIK
digital certificate can only be generated by the genuine
TED owner using a private part of the AIK key that
never leaves the TPM inside the device, the attacker
cannot provide the legitimate AIK certificate and there-
fore cannot access the private data stored in the applica-
tion server. However, the device cannot prevent the
interception of the screen outputs such as displayed
bank balance to be captured by the attacker.

8.2. Malware on the device
The mobile and portable devices are manufactured and
distributed by the service providers to their consumers.
We have made an assumption that such devices are
most likely to be manufactured within a tightly con-
trolled environment. For example, in our banking appli-
cation, the bank (via possibly trusted third party)
actually manufactures and distributes the device to its
customers. When the device is plugged into the host
machine, it does not use any resources from the host
machine it is connected. This makes hard, if not impos-
sible, for malware to be installed in the device practically
preventing any credential-stealing attacks. Additionally,

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 14 of 19

an integrity of the device’s software environment is mea-
sured and stored in a secure storage in the TPM chip
inside the device. If the environment is altered by the
presence of the malware, AIK cannot be activated.

8.3. Theft or loss of the device
All cryptographic keys in our device are stored in its
temper-resistant secure storage. To unlock any crypto-
graphic key inside the device and perform any crypto-
graphic functionality, the device user needs to supply
both the owner secret and the password for the SRK.
The attacker must obtain these secrets before the user
discovers the theft and revokes the stored keys. It is an
unlikely situation that the attackers manage to steal
both the device and the secrets. This provides one more
level of defence in depth against such attack.

8.4. Man-in-the-middle attack
This type of attack is possible both on the USB channel
and the Network. The attackers launch the channel-
breaking attack by eavesdropping the network where the
data being transferred. It might be possible for the
attackers to intercept the data in transit. However, the
attackers would not be able to read the data. The net-
work between the device user and the bank application
server is protected by SSL. The network between the
device user and the privacy CA is protected by the
encryption using a private part of the AIK that never
leaves the TPM chip inside the device. Without having
an owner secret, it is not possible for the attackers to be

able to decrypt the data because the attackers will never
be able to get the appropriate AIK private key.
In our proposal, an attestation protocol is used to

determine whether there have been any unexpected
changes to a computer’s hardware and software environ-
ments. The hardware check utilize the cryptographic
features of the TPM microcontroller, including the use
of the AIK. The software environment and configuration
is checked for validity, starting from boot time to appli-
cation load time, with a set of identifying PCR values.
During attestation, the PCR values and the AIK are used
to validate that a remote machine (or indeed, the local
machine, if required by some applications) may trust the
platform. This TCG-type of attestation has been criti-
cized because it performs the integrity validation only at
load-time. Successful load-time attestation does not
ensure that attestation is always maintained, with possi-
ble compromises not being detected post load-time
attestation. This feature, referred to as time-of-attesta-
tion to time-of-use gap [46]. This problem occurs while
doing run time attestation [47]. We have used two com-
puters with TCG platforms in Figure 12 to illustrate the
shortcomings of attestation protocol. Figure 12 shows
the gap as (1). From our implementation of the TCG-
style attestation protocol, we further identified another
gap, representing the time between the PCR values and
AIK are being measured by the sending host, which we
call the time-of-measurement, and the time at which
these values are being validated by the receiving host,
which we call the time-of-verification. This interval is

Figure 11 A screenshot of our running trusted application demonstrator.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 15 of 19

illustrated in Figure 12 as (2). During this interval, it is
possible that by the time PCR values and the AIK are
being validated by the service provider, the device’s
TPM and platform characteristics may have been com-
promised. These problems along with other problems
such as replay attacks on TPM are still being investi-
gated within the community [48,49].
We have performed an initial performance analysis to

measure the impact of the attestation protocol on
authentication. We used our device on a host machine
Intel Core 2 Duo 6400 with dual processors of 2.13
GHz both with 1.99 GB of RAM, with a browser (both
IE 7 and 8 and Firefox 3.× tested) on windows XP OS
environment. Our remote server machine ran a Tomcat
web server (version 6.0) and the bank application devel-
oped using JSP. The server machine configuration is
identical to the device host machine. A privacy CA
developed as a java implementation. We use Java Cryto-
graphic Engine and Bouncy Castle Crypto API to imple-
ment privacy CA. The privacy CA application is running
on the server. To measure the performance, we first
tested the login without remote attestation, simply using
user name and password. The average time for authenti-
cation was 0.015 seconds. We then use login with
remote attestation. For the purpose of remote attesta-
tion, we used RSA 2048 bit and AES 256 bit with CBC
attributes for public and symmetric key encryption,
respectively. SHA-1 with 160-bit was used as the hash
function. We obtained the random numbers from the
RNG function of the TPM chip. We measured that, on
average, using remote attestation took 7.628 s, compared
to 0.015 s using plain user name and password

combination. We believe that this overhead was due to
the following:

• Device initialization, required data collection and
creation of the AIK cryptographic key: average 2.39 s;
• Certificate creation by the Privacy CA: average 1.96 s;
• Certificate activation after verifying the environment
the key has created has not changed: average 3.27.

In short, the overhead is the cost of “hardening” the
login process using TPM, where most of the time is
spent on executing TPM functions and attestation. An
analysis on attestation-based authentication is also
reported in [50].
Further analysis of the attestation protocol revealed

that 39% time was spent on making TPM function calls
via the TCG software stack (TSS), whereas 61% time
was spent on non-TPM related function calls such as
connection to remote hosts. We further analyzed the
time spent on TPM calls and identified four critical
function calls in the mutual attestation protocol. This is
done to ensure that there is no hidden overhead to any
particular function calls to TPM chip other than the
expense incurred to making TPM calls in general, as
well as possibility of optimizing TPM calls. These are:
CollateIdentity, IdentityCredential, Quote, and VerifyI-
dentityCredential. Out of time spent on TPM calls, Col-
lateIdentity took 48% time, IdentityCredential took 19%,
Quote took 19% and VerifyIdentityCredential took 14%.
We conducted further analysis of implementation code
with the aim of minimizing the number of TPM calls
and the complexity of code at each stage. This led us to

Host Machine A Host Machine B

Code measurement v;
v PCR;

AIK created

Code starts executing
PCR == v

Gap between
Time-of-attestation

&
Time-of-Use

(1)

Gap between
Time-of-Measurement

&
Time-of-Verification

(2)

Validation of PCR, AIK

Time Time

Figure 12 The gaps between the time-of-attestation and time-of-use, and the time-of-measurement and time-of-verification.

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 16 of 19

the conclusion that TPM calls are stable as each TPM
call at different stages took about the same time without
having particular overhead on any specific TPM calls
because of different implementation code. For example,
both “IdentityCredential” and “Quote” made about 12
TPM calls, whereas “VerifyIdentity Credential” made 9
TPM calls. “CollateIdentity” made 20 TPM calls, as well
as complex calculation of bytes, to create and use cre-
dentials taking more time than calls used in other
stages. These observations led us to believe that there is
no overhead placed in any particular TPM calls in our
implementation. However, if these calls are repeated for
every message exchanged between USB-device and the
enterprise server, the TPM calls become a bottleneck
for efficient transfer of data between to and from USB
device. From these simulation results, we observed that
reducing a large number protocol messages that subse-
quently triggers a large number of TPM calls might
result in an efficient attestation protocol. It must be
noted that it is not our intention to do an exhaustive
study on performance of an attestation protocol for a
particular TPM implementation on a specific TPM chip.
We understand the fact that various vendors and com-
mercial IT companies are still working on improving
the functionalities and corresponding technologies
related to TPM chips. The performance figures in this
section are indication purpose only to demonstrate that
TPM calls are relatively expensive at currently provided
chips and it could result a serious overhead if these calls
are made extensively on today’s applications
A caveat needs to be placed here. This application

scenario was developed as a demonstrator, and the pro-
totype developed shows the main features of the plat-
form. Using TPM and the associated attestation
protocol needs to be carefully examined with respect to
the risks and costs of deploying such a solution for a
production ready system.
However, it should be emphasized that there are some

particular applications such as mission critical opera-
tions, applications with high transaction failure costs
such as merchant banking, or covert cyberse-curity
applications where the benefits of using TPM and its
attestation protocol overwhelms the costs. We are, in
co-operation with several research organizations, investi-
gating the use of the device as an advanced cybersecur-
ity platform.

9. Conclusions and future work
In recent times, we have seen a growing number of
enterprise applications developed to run in heteroge-
neous, open and potentially hostile environments by
accessing enterprise resources remotely. Though these
applications provide greater flexibility, they present new
challenges on establishing a trust between a remote

client computer and enterprise application server. This
paper addresses this problem by developing a mobile
and portable TCP using trusted computing technologies.
We have successfully designed, built and demonstrated
a USB-based TCP based on the TCG specification. Our
demonstration consists of three components: hardware,
system software and application. The novelty of the
hardware design lies in the design of a USB form factor
TPM motherboard with a USB port, and mating it with
an embedded system board as a daughter board. The
unique feature of our system software architecture is
that it supports both native as well as external applica-
tions. The principles behind trust establishment on a
portable computing platform using TPM and attestation,
was demonstrated through the use of the implemented
hardware and software architecture of a Web-based
banking application. Our key contributions can be sum-
marized as follows: we have designed a USB-based
trusted device based on TCG specification to address
the problem of mobility and portability of trust. We
have built the hardware platform, software system and
tested in a number of applications including Internet
banking. The test clearly validated the proposed concept
and design.
The current engineering prototype has a number of

limitations. As the proposed device does not have any
Input/Output devices on its own, it relies on the host
machine’s support. This means an external application
code needs to be executed at the host machine to estab-
lish a communication between the host Input/Output
devices and the trusted device attached to its USB port.
This makes us difficult to achieve one of the require-
ments of trusted computing technology, secure input
and output. For example, our demonstration uses a
Web application, which suffers from well-known brow-
ser attacks. In future, we plan to investigate techniques
to mitigate this limitation. We are also investigating the
use of the device in other enterprise applications such
as eHealth, eGovernment and smart grid or smart infra-
structure. The current authentication mechanism is not
strong for many of these applications. We also plan to
develop a biometric authentication mechanism for our
platform without compromising its portability and
mobility. The future work also includes the development
of a tiny secure operating system for our device towards
creating trusted virtual platform [51,52].

Abbreviations
AIK: attestation identity key; COM: computer-on-module; DIVA: dynamic
isolation of virtualized applications; DORIS: digital online registration and
identification system; EK: endorsement key; OE: openembedded; OS:
operating system; PCR: platform configuration register; RNDIS: remote
network device interface specification; RNG: random number generator; SEM:
secure execution mode; SRK: storage root key; TCG: trusted computing
group; TCP: trusted computing platform; TED: trust extension device; TPD:

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 17 of 19

trusted personal devices; TPM: trusted platform module; TSS: trusted
software stack; TVMM: trusted virtual machine monitor.

Competing interests
The authors declare that they have no competing interests.

Received: 12 December 2010 Accepted: 25 August 2011
Published: 25 August 2011

References
1. E Newcomer, G Lomow, Understanding SOA with Web Services (Independent

Technology Guides) (Addison-Wesley Professional, 2004)
2. N WeiBenberg, A Voisard, R Gartmann, Using ontologies in personalized

mobile applications, in Proceedings of the 12th annual ACM International
Workshop on Geographic Information Systems, ser. GIS. (ACM, New York,
2004), pp. 2–11

3. D Raptis, N Tselios, N Avouris, Context-based design of mobile applications
for museums: a survey of existing practices, in Proceedings of the 7th
International Conference on Human Computer Interaction with Mobile Devices
& Services, ser. MobileHCI (ACM, New York, 2005), pp. 153–160

4. B Parno, JM McCune, A Perrig, Bootstrapping trust in commodity
computers, in IEEE Symposium on Security and Privacy, 414–429 (2010)

5. D O’Callaghan, L Doran, B Coghlan, Evaluating trust in grid certificates, in
Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC
(ACM, New York, 2010), pp. 1449–1450

6. J Feghhi, P Williams, Digital Certificates: Applied Internet Security (with CD-
ROM) (Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1998)

7. T AbuHmed, N Nyamaa, D Nyang, Software-based remote code attestation
in wireless sensor network, in Proceedings of the 28th IEEE Conference on
Global Telecommunications, ser. GLOBECOM’09 (IEEE Press, Piscataway, NJ,
2009), pp. 4680–4687, http://portal.acm.org/citation.cfm?id=1811982.1812159

8. Trusted Computing Group, http://www.trustedcomputinggroup.org/
9. IronKey, https://www.ironkey.com/
10. Encryptakey, http://investing.businessweek.com/research/stocks/private/

snapshot.asp?privcapId=13189536
11. C Mundie, P de Vries, P Haynes, M Corwine, Microsoft white paper on

trustworthy computing, (Microsoft Corporation 2002)
12. FC Bormann, L Manteau, A Linke, JC Pailles, J van Dijk, Concept for trusted

personal devices in a mobile and networked environment, in 15th IST
Mobile and Wireless Communication Summit (2006)

13. U Kumar, GS Thakur, A Helmy, Proximity based trust-advisor using
encounters for mobile societies: analysis of four filters. Wirel Commun
Mobile Comput. 10(12), 1605–1619 (2010). doi:10.1002/wcm.1059

14. TCG Trusted Platform Module (TPM) Specification, https://www.
trustedcomputinggroup.org/specs/tpm/

15. Trusted Computing Platform Alliance (TCPA), Main specification, version
1.1b (2002)

16. Trusted Computing Group, Main specification, version 1.2 revision no. 103,
http://www.trustedcomputinggroup.org/resources/tpm (2010). main
specification

17. V Gratzer, D Naccache, Trust on a nationwide scale. IEEE Security Privacy.
5(5), 69–71 (2007)

18. Gemalto, http://www.gemalto.com
19. R Sailer, X Zhang, T Jaeger, L van Doorn, Design and implementation of a

tcg-based integrity measurement architecture, in Proceedings of the 13th
Conference on USENIX Security Symposium!, 16–16 (2004)

20. D Moreland, S Nepal, H Hwang, J Zic, A snapshot of trusted personal
devices applicable to transaction processing. Personal Ubiquitous Comput.
14(4), 347–361 (2010). doi:10.1007/s00779-009-0235-6

21. W Rankl, W Effing, Smart Card Handbook, 1st edn. (John Wiley & Sons, Inc.,
New York, 1997)

22. HK Lu, Network smart card review and analysis. Comput Netw. 51,
2234–2248 (2007), http://portal.acm.org/citation.cfm?id=1241112.1241372.
doi:10.1016/j.comnet.2007.01.009

23. M Montgomery, A Ali, K Lu, Secure network card, in Smart Card Research
and Advanced Applications VI, ser. IFIP International Federation for
Information Processing, vol. 153, ed. by Quisquater J-J, Paradinas P,
Deswarte Y, El Kalam A (Springer, Boston, MA, 2004), pp. 193–208

24. P Urien, Internet card, a smart card as a true internet node. Comput
Commun. 23(17), 1655–1666 http://www.sciencedirect.com/science/article/

B6TYP-41ST54T-B/2/24adee584b18afe9416b17576794292a (2000).
doi:10.1016/S0140-3664(00)00252-8

25. J Rees, P Honeyman, Webcard: a java card web server, in Proceedings of the
Fourth Working Conference on Smart Card Research and Advanced
Applications on Smart Card Research and Advanced Applications (Kluwer
Academic Publishers, Norwell, MA, 2001), pp. 197–207, http://portal.acm.
org/citation.cfm?id=366214.366282

26. HK Lu, AM Ali, Making smart cards truly portable. IEEE Security Privacy. 8(2),
28–34 (2010)

27. HK Lu, AM Ali, S Durand, L Castillo, A new secure communication
framework for smart cards, in Proceedings of the 6th IEEE Conference on
Consumer Communications and Networking Conference, ser. CCNC’09 (IEEE
Press, 2009), pp. 818–822

28. Y Deswarte, S Gambs, Towards a privacy-preserving national identity card.
in DPM/SETOP, 48–64 (2009)

29. Ministry of Home Affairs Singapore, in the 15th annual governmentware
securing intelligent enterprises (GovWare’i06), (Singapore, 2006)

30. S Nepal, J Zic, H Hwang, D Moreland, Trust extension device: providing
mobility and portability of trust in cooperative information systems, in OTM
Conferences (1), 253–271 (2007)

31. RW Shirey, Internet security glossary, version 2. IETF request for comments:
4949 (August 2007), http://tools.ietf.org/html/rfc4949

32. D Fisher, JM McClune, ADJ Andrews, Trust and trusted computing
platforms. Carnegie Mellon University, Technical Report 642 (2011), http://
repository.cmu.edu/sei/642

33. G Coker, J Guttman, P Loscocco, A Herzog, J Millen, B OHanlon, J Ramsdell,
A Segall, J Sheehy, B Sniffen, Principles of remote attestation. Int J Inf
Security. 10(2), 62–83 (2011)

34. B Smyth, M Ryan, L Chen, Direct anonymous attestation (DAA): ensuring
privacy with corrupt administrators, in Proceedings of the 4th European
Conference on Security and Privacy in Ad-hoc and Sensor Networks, ser.
ESAS’07, (Springer-Verlag, Heidelberg, 2007), pp. 218–231, http://portal.acm.
org/citation.cfm?id=1784404.1784426

35. V Haldar, D Chandra, M Franz, Semantic remote attestation: a virtual
machine directed approach to trusted computing, in VM’04: Proceedings of
the 3rd Conference on Virtual Machine Research And Technology Symposium,
(USENIX Association, Berkeley, CA, 2004), pp. 3–3

36. L Chen, R Landfermann, H L’hr, M Rohe, A Sadeghi, C St’ble, A protocol for
property-based attestation, in STC ‘06: Proceedings of the first ACM workshop
on Scalable trusted computing (ACM, New York, 2006), pp. 7–16

37. E Shi, A Perrig, LV Doorn, Bind: a fine-grained attestation service for secure
distributed systems, in IEEE Symposium on Security and Privacy, 154–168
(2005)

38. A. Corporation, Amd platform for trustworthy computing, in WinHEC 2003,
(Microsoft, September 2003) http://www.microsoft.com/whdc/winhec/
papers03.mspx

39. T Garfinkel, B Pfaff, J Chow, M Rosenblum, D Boneh, Terra: a virtual
machine-based platform for trusted computing, in Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, ser. SOSP ‘03.
(ACM, New York, 2003), pp. 193–206

40. J Jang, S Nepal, J Zic, Establishing a trust relationship in cooperative
information systems, in International Conference on Cooperative Information
Systems, 426–443 (2006)

41. S Yoshihama, T Ebringer, M Nakamura, S Munetoh, H Maruyama, Ws-
attestation: efficient and fine-grained remote attestation on web services. in
Proceedings of the IEEE International Conference on Web Services, ser. ICWS
‘05, (IEEE Computer Society, Washington, DC, 2005), pp. 743–750

42. Gumstix Overo Earth, http://www.gumstix.com/
43. I. Corporation, Low pin count interface specification (August 2002), http://

www.intel.com/design/chipsets/industry/25128901.pdf
44. S. Committee, Sff-8485 specification for serial gpio (sgpio) bus, revision 0.7,

ftp://ftp.seagate.com/sff/SFF- 8485.PDF (2006)
45. TCG Software Stack (TSS) Specification.
46. L Davi, A-R Sadeghi, M Winandy, Dynamic integrity measurement and

attestation: towards defense against return-oriented programming attacks,
in Proceedings of the 2009 ACM workshop on Scalable Trusted Computing,
ser. STC ‘09. (ACM, New York, 2009), pp. 49–54

47. A-R Sadeghi, T Schneider, M Winandy, Token-based cloud computing, in
TRUST, 417–429 (2010)

48. M van Dijk, J Rhodes, LFG Sarmenta, S Devadas, Offline untrusted storage
with immediate detection of forking and replay attacks, in Proceedings of

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 18 of 19

http://portal.acm.org/citation.cfm?id=1811982.1812159
http://www.trustedcomputinggroup.org/
https://www.ironkey.com/
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=13189536
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=13189536
https://www.trustedcomputinggroup.org/specs/tpm/
https://www.trustedcomputinggroup.org/specs/tpm/
http://www.trustedcomputinggroup.org/resources/tpm
http://www.gemalto.com
http://portal.acm.org/citation.cfm?id=1241112.1241372
http://www.sciencedirect.com/science/article/B6TYP-41ST54T-B/2/24adee584b18afe9416b17576794292a
http://www.sciencedirect.com/science/article/B6TYP-41ST54T-B/2/24adee584b18afe9416b17576794292a
http://portal.acm.org/citation.cfm?id=366214.366282
http://portal.acm.org/citation.cfm?id=366214.366282
http://tools.ietf.org/html/rfc4949
http://repository.cmu.edu/sei/642
http://repository.cmu.edu/sei/642
http://portal.acm.org/citation.cfm?id=1784404.1784426
http://portal.acm.org/citation.cfm?id=1784404.1784426
http://www.ncbi.nlm.nih.gov/pubmed/21878105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21878105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21879101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21879101?dopt=Abstract
http://www.microsoft.com/whdc/winhec/papers03.mspx
http://www.microsoft.com/whdc/winhec/papers03.mspx
http://www.gumstix.com/
http://www.intel.com/design/chipsets/industry/25128901.pdf
http://www.intel.com/design/chipsets/industry/25128901.pdf
ftp://ftp.seagate.com/sff/SFF- 8485.PDF

the 2007 ACM workshop on Scalable Trusted Computing, ser. STC ‘07 (ACM,
New York, 2007), pp. 41–48.

49. D Bruschi, L Cavallaro, A Lanzi, M Monga, Replay attack in tcg specification
and solution, in Proceedings of the 21st Annual Computer Security
Applications Conference (IEEE Computer Society, Washington, DC, 2005), pp.
127–137. http://portal.acm.org/citation.cfm?id=1106778.1106817

50. S Delaune, S Kremer, M Ryan, G Steel, A formal analysis of authentication in
the tpm, in Formal Aspects of Security and Trust, ser. Lecture Notes in
Computer Science, vol. 6561, ed. by Degano P, Etalle S, Guttman J (Springer,
Heidelberg, 2011), pp. 111–125

51. M Pirker, R Toegl, Towards a virtual trusted platform. J Universal Comput
Sci. 16, 531–542 (2010)

52. JM McCune, Y Li, N Qu, Z Zhou, A Datta, V Gligor, A Perrig, Trustvisor:
efficient tcb reduction and attestation, in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP ‘10 (IEEE Computer Society,
Washington, DC, 2010), pp. 143–158

doi:10.1186/1687-1499-2011-75
Cite this article as: Nepal et al.: A mobile and portable trusted
computing platform. EURASIP Journal on Wireless Communications and
Networking 2011 2011:75.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Nepal et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:75
http://jwcn.eurasipjournals.com/content/2011/1/75

Page 19 of 19

http://portal.acm.org/citation.cfm?id=1106778.1106817
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	Problem statement

	2. Motivation and related work
	3. Trusted platform module
	4. Remote attestation
	5. Design and implementation of hardware architecture
	Dimensions
	Cost
	Physical connection
	Electrical requirements
	Internet connectivity
	No host interference
	Device insertion and removal robustness

	6. Design and implementation of software architecture
	7. Design and implementation of application scenario
	8. Security and performance analysis
	8.1. Theft of user name and password
	8.2. Malware on the device
	8.3. Theft or loss of the device
	8.4. Man-in-the-middle attack

	9. Conclusions and future work
	Competing interests
	References

