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The set of subsystems Σ(m) of a finite quantum system Σ(n) (with variables in Z(n)) together with

logical connectives, is a distributive lattice. With regard to this lattice, the ℓ(m|ρn) = Tr[P(m)ρn]

(where P(m) is the projector to Σ(m)) obeys a supermodularity inequality, and it is interpreted as a

lower probability in the sense of the Dempster-Shafer theory, and not as a Kolmogorov probability.

It is shown that the basic concepts of the Dempster-Shafer theory (lower and upper probabilities

and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems.

I. INTRODUCTION

When we have a structure (e.g., groups in algebra), we also introduce substructures (subgroups) and

study the relationship between them. This is our motivation for the study of subsystems of a finite

quantum system Σ(n), with variables in Z(n). A subsystem of Σ(n) is a system with variables in a

subgroup of Z(n). The subgroups of Z(n) are the Z(m) with m|n, and therefore the subsystems of Σ(n)

are the Σ(m) with m|n. The various subsystems Σ(m) are embedded into Σ(n) as described below. The

projectors P(m) into the subsystems Σ(m) commute with each other, and they can be associated with

commuting measurements. The set of subsystems of Σ(n) (with logical connectives) is a distributive

lattice Λ(Σn).

Our concept ‘subsystem’ is linked to subgroups, because the positions in a subsystem take values in

a subgroup of the group of positions of the full system. The Hilbert space H(m) of Σ(m) is a subspace

of the Hilbert space H(n) of Σ(n), but there is no subsystem for every subspace of H(n). Our concept

‘subsystem’ is much stronger than the concept ‘subspace’. The lattice of the subgroups of Z(n) is

distributive, and consequently the lattice Λ(Σn) of subsystems of Σ(n) is distributive. In fact it is a
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Heyting algebra, because every finite distributive lattice is a Heyting algebra[1–4].

Probability theory is tacitly defined with respect to a lattice, because in its axioms it needs the concepts

of conjuction, disjunction and negation. Kolmogorov probability is defined on a powerset 2Ω, which

is a Boolean algebra, and where the intersection, union and complement play the role of conjunction,

disjunction and negation. Quantum logic studies the orthomodular lattice of closed subspaces of a Hilbert

space [5–8], which has various Boolean algebras as sublattices, and Kolmogorov probabilities are defined

on them.

In ref[9, 10] we have studied a different lattice which is the distributive lattice (Heyting algebra) of

the subsystems of a finite quantum system. We have shown that the quantum probabilities, ℓ(m|ρn) =

Tr[P(m)ρn] (where ρn is a density matrix of the system Σ(n)), obey the supermodularity inequality

ℓ(m1 ∨ m2|ρn) − ℓ(m1|ρn) − ℓ(m2|ρn) + ℓ(m1 ∧ m2|ρn) ≥ 0. (1)

In contrast, Kolmogorov probabilities q(m) obey the modularity equality

q(m1 ∨ m2) − q(m1) − q(m2) + q(m1 ∧ m2) = 0, (2)

Only in the special case that the variables m1, m2 belong to the same chain, Eq(1) is valid as an equality.

Within a chain the quantum probabilities ℓ(m|ρn) obey an equality analogous to Eq.(2), i.e., they behave

like Kolmogorov probabilities.

There are many problems in Artificial Intelligence, Operations Research, Economics, etc, which use

probabilities with the property of Eq.(1). In these subjects we have conflicting data, and concepts like

imprecise probability and non-additive probability [14–18], have been introduced in order to reconcile

the contradictions. Among such theories, the Dempster-Shafer approach [19–24] has been used exten-

sively in Artificial Intelligence, and in this paper we use it in the formalism of finite quantum systems.

The Dempster-Shafer theory fits very well with the fact that the ℓ(m|ρn) obey Eq.(1), but not Eq.(2).

The terminology used in quantum mechanics is sometimes different from the terminology used in the

Dempster-Shafer theory, and we provide a ‘translation’ between the two.

In section 2, we discuss briefly, submodular and supermodular functions, the lattice structure of the
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set of subgroups of Z(n), and capacities (a concept weaker than probability measures), in order to

establish the notation. In section 3 we present some aspects of the Dempster-Shafer theory (lower and

upper probabilities, multivaluedness, etc) which are used later. In section 4, we provide a deeper insight

to the fact that, with respect to the distributive lattice Λ(Σn) of the subsystems of Σ(n), the quantum

probabilities ℓ(m|ρn) obey the inequality of Eq.(1), but they do not obey the equality of Eq.(2). In section

5, we show that the properties of the quantum probabilities ℓ(m|ρn) fit very well with the Dempster-Shafer

theory. We conclude in section 6, with a discussion of our results.

II. PRELIMINARIES

(1) r|s or r ≺ s denotes that r is a divisor of s. GCD(r, s) and LCM(r, s) are the greatest common

divisor and least common multiplier correspondingly, of the integers r, s.

D(n) is the set of divisors of n. The cardinality of D(n) is given by the divisor function σ0(n). A

divisor r of n, such that r and n/r are coprime, is called a Hall divisor of n (a terminology inspired

by group theory).

(2) Z(n) is the ring of integers modulo n. If m ≺ n then Z(m) is a subgroup of Z(n). Z
∗(n) is the

reduced system of residues modulo n. It contains the invertible elements of Z(n).

(3) A set A viewed as a lattice (i.e., with the operations ∨ and ∧) is denoted as Λ(A). Throughout

the paper we have various lattices and for simplicity we use the same symbols ≺, ∧, ∨, ¬, for the

‘partial order’, ‘meet’, ‘join’ and ‘negation’, correspondingly. We also use the same symbols O and

I for the smallest and greatest elements.

All our lattices are finite distributive lattices. As such they are Heyting algebras and obey the

relations a ≺ ¬¬a and a ∨ ¬a ≺ I. A Heyting algebra may have a sublattice which is a Boolean

algebra, and for its elements ¬¬a = a and a ∨ ¬a = I. The a ∨ ¬a = I is the ‘law of the excluded

middle’, and it is is not valid in Heyting algebras, but it is valid in Boolean algebras. The formalism

of subsystems of Σ(n) as a Heyting algebra, and the physical meaning of the logical connectives, is

discussed in [9]. Here we only need a minimal amount of these ideas.

(4) Kolmogorov probability theory is defined on the powerset 2Ω of a set Ω. This is a Boolean algebra
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which has the ⊆, ∩ and ∪, as the logical connectives ≺, ∧, ∨, correspondingly. The negation ¬A of

a subset of Ω, is the complement A = Ω − A.

(5) Sometimes in the literature, in a bipartite system described with the tensor product HA ⊗HB, the

term subsystem is used for each of the two parties indexed with A, B. Here the term subsystem

means something different. If Σ(n) is a system with variables in Z(n), a subsystem Σ(m) of Σ(n), is

a system with variables in a subgroup of Z(n). And there is an embedding of the subsystem Σ(m)

into Σ(n), which is described explicitly below.

A. Submodular and supermodular functions

Let f(m) be a function on a distributive lattice Λ and

F (m1, m2) = f(m1 ∨ m2) − f(m1) − f(m2) + f(m1 ∧ m2); mi ∈ Λ. (3)

f(m) is supermodular, modular or submodular, if for all m1, m2, we get F (m1, m2) ≥ 0, F (m1, m2) = 0,

F (m1, m2) ≤ 0, correspondingly. We note that if m1 ≺ m2 or m1 = O or m1 = I, then F (m1, m2) = 0.

Supermodular and submodular functions have been studied and used in Optimization and Operations

Research [25]. Their properties are related to the fact that F (m1, m2) can be viewed as a ‘discretized

second derivative’.

For functions such that f(O) = 0, and for m1 ∧ m2 = O, Eq.(3) gives

F (m1, m2) = f(m1 ∨ m2) − f(m1) − f(m2), (4)

and supermodularity, modularity or submodularity, reduces to superadditivity, additivity or subadditivity,

correspondingly.
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B. The lattice Λ[D(n)] of divisors of n

We factorize the number n in terms of prime numbers as

n =
∏

p∈̟(n)

pep(n) (5)

Here ̟(n) is the set of prime numbers in this factorization, and ep(n) is the exponent of p. If k ∈ D(n)

then

k =
∏

p∈̟(k)

pep(k); ̟(k) ⊂ ̟(n); ep(k) ≤ ep(n) (6)

The set D(n) with divisibility as partial order, and with

k ∧ m = GCD(k, m); k ∨ m = LCM(k, m); ¬k =
∏

p∈̟(n)−̟(k)

pep(n) (7)

is a finite distributive lattice and as such it is a Heyting algebra with O = 1 and I = n. We denote it as

Λ[D(n)]. ¬k is the largest element of D(n) such that k ∧ (¬k) = 1. The following subset of D(n)

D
B(n) =

{
∏

p∈π

pep(n) | π ⊆ ̟(n)

}
, (8)

contains the Hall divisors of n, and it is a Boolean algebra. If all exponents ep(n) = 1, then D
B(n) = D(n).

C. The lattice Λ[Z(n)] of subgroups of Z(n)

We consider the set

Z(n) = {Z(m) | m ∈ D(n)}; n ∈ N, (9)
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which contains the subgroups of Z(n). A subgroup Z(m) can be embedded into a larger group Z(k)

(where m ≺ k ≺ n), with the map

Z(m) ∋ a → da ∈ Z(k); d =
k

m
(10)

The Z(n) with subgroup as partial order, and with

Z(k ∧ m) = Z(k) ∧ Z(m); Z(k ∨ m) = Z(k) ∨ Z(m); ¬Z(k) = Z(¬k) (11)

is a Heyting algebra with O = Z(1) and I = Z(n). It is isomorphic to Λ[D(n)] and we denote it as

Λ[Z(n)].

Z(k∨m) is the smallest group in Z(n) which has the Z(k) and Z(m) as subgroups. Taking into account

the map of Eq.(10), we see that Z(k ∨ m) contains all the elements of both Z(k) and Z(m), and also

the elements of Z
∗(k ∨ m), which as explained later, cause the supermodularity of ℓ(m|ρn), in Eq.(1).

Z(k ∧ m) is the largest subgroup of both Z(k) and Z(m). ¬Z(k) is the largest group in Z(n) such that

[¬Z(k)] ∧ Z(k) = Z(1).

The subset of Λ[Z(n)], given by

Λ[ZB(n)] =

{
Z

(
∏

p∈π

pep(n)

)
| π ⊆ ̟(n)

}
, (12)

is a Boolean algebra.

D. Capacities or non-additive probabilities

Sometimes there is added value in a coalition (e.g., in the merger of two companies). In everyday

language this is described with the expression ‘one plus one is three’, or the expression ‘the whole is

greater than the sum of its parts’. Of course, the added value can be negative. In such cases probability

is not additive. The term capacity is used for non-additive probabilities (e.g., [26, 27]).

Let 2Ω be the powerset of a set Ω, which in our case is finite. A capacity or non-additive probability
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in Ω, is a function µ from 2Ω to [0, 1], such that

µ(∅) = 0; µ(Ω) = 1 (13)

A ⊆ B ⊆ Ω → µ(A) ≤ µ(B) (14)

If we replace the monotonicity relation of Eq.(14) with the additivity property

A ∩ B = ∅ → µ(A ∪ B) = µ(A) + µ(B) (15)

which is stronger, we get a probability measure.

Let Ω = {1, ..., n}. The non-additivity of capacities, i.e., the fact that in general µ({i, j}) − µ({j}) 6=

µ({i}) implies that µ({i}) is not a good estimate of the weight (or importance) of the element i, in the

formalism. The

W(i|B) = µ(B ∪ {i})− µ(B) (16)

is the added value to the weight (or importance) of the element i when it is in a coalition with the subset

B ⊆ Ω. We can introduce a weighted average of these quantities as a measure of the overall importance

of the element i. This can be done in various ways. Shapley [27, 28] introduced one of them, which is

used in game theory, as a measure of the importance of each player within a coalition. We do not pursue

further this direction.

III. MULTIVALUEDNESS AND THE DEMPSTER-SHAFER THEORY

Let X be a sample space, and Γ a multivalued map from X to another sample space Ω. The Dempster-

Shafer theory carries probabilities on subsets of X , into lower and upper probabilities on subsets of Ω.

The need for lower and upper probabilities arises from the fact that Γ is not single-valued. In this case

we have an ambiguity in the probability, which is expressed with the interval from the lower to the

upper probability. We first give an example, and then summarize the properties of the upper and lower

probabilities, and compare them with those of Kolmogorov probabilities. The analogues of these ideas
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for the quantum formalism are discussed explicitly, later.

A. Uncertainty and ambiguity: an example

A class has n students S1, ..., Sn. An attribute for each student Si is not accurately known, but it takes

values in a set Gi of integer numbers. For example, each student does a ‘final year project’, and each

project is assessed independently by many professors. The set Gi contains all the marks (integers in the

interval [0, 100]) for the project of the student Si. The number of professors assessing each project may

vary from one student to another, i.e., the various sets Gi have different cardinalities, in general. We

have a multivalued map, where to each student corresponds a set of marks. We calculate the probability

that a random student has marks within a given set A (e.g., above 70).

There are three categories of students.

• The first category contains n1 students such that Gi ⊆ A. For these students we are certain that

their marks belong to the set A.

• The second category contains n2 students such that Gi ∩ A 6= ∅ and also Gi ∩ A 6= ∅. For these

students, some (but not all) of their marks belong to A. Dempster [20] uses the term ‘don’t know’

for this category.

• The third category contains the n− n1 − n2 students such that Gi ⊆ A. For these students we are

certain that the marks do not belong to the set A.

The n1 +n2 students in the first two categories, can be described collectively by saying it is not true that

Gi ⊆ A. So the Gi ⊆ A is not equivalent to the negation of Gi ⊆ A.

The lower probability or belief is ℓ(A) = n1/n, and is associated with the statement Gi ⊆ A. The upper

probability or plausibility is u(A) = (n1 + n2)/n, and is associated with the negation of the statement

Gi ⊆ A. The lower (upper) probability, simply excludes (includes) all the ‘don’t know’ cases.

Table I, shows the marks for the projects of four students (ideally we should have an example with

large n, but for practical reasons we take n = 4). Table II, shows the lower and upper probabilities ℓ(Ai)
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and u(Ai) for the sets

A1 = {m | 60 ≤ m ≤ 69}; A2 = {m | 70 ≤ m ≤ 100}

A1 ∪ A2 = {m | 60 ≤ m ≤ 100}; A3 = {m | 65 ≤ m ≤ 75}. (17)

There is much discussion in the literature about the normalization of the probabilities, in the case that

some of the sets Gi are empty, i.e., some students have not been assessed. We do not consider this case,

i.e., we assume that all sets Gi with i = 1, ..., n, are non-empty. The above example is similar to the one

in ref.[24], where a company does not know the age of its employees. Several of its managers provide

an estimate for the age of each employee, and this corresponds to the grades for each project, in our

example.

For each student Si we choose one mark ai ∈ Gi, and then we have the single-valued map which we

denote as Γν . There are clearly many such maps indexed with ν, and the mark of each student depends

on the choice of Γν . With the single-valued map Γν , let kν be the number of students with mark in the

set A. Then the probability that a random student has a mark within the set A, is simply qν(A) = kν/n.

For any Γν , we get n1 ≤ kν ≤ n2 and therefore ℓ(A) ≤ qν(A) ≤ u(A).

There are two different kinds of indeterminateness in these examples. The first is associated to proba-

bilities qν(A) with fixed ν. The second is related to the fact that we have many ν, and therefore many

qν(A) for a fixed set A. In order to distinguish them, we need two different terms, and following ref[15],

we call the former uncertainty and the latter ambiguity. Ambiguity is intimately related to the multival-

uedness, and it refers to the fact that we have an interval [ℓ(A), u(A)] of probabilities, rather than a single

probability. In the case of singlevaluedness (i.e., if we have a single grade for each project), ℓ(A) = u(A),

and there is no ambiguity.
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B. Properties of lower and upper probabilities

Let A, B be elements of the powerset 2Ω (i.e., subsets of Ω). Kolmogorov’s probability obeys the

relations

q(∅) = 0; q(Ω) = 1 (18)

q(A ∪ B) − q(A) − q(B) + q(A ∩ B) = 0, (19)

and from this follows that

A ⊆ B → q(A) ≤ q(B) (20)

q(A) + q(A) = 1. (21)

The lower probability or belief ℓ(A), is a monotone function from 2Ω to [0, 1], i.e.,

A ⊆ B → ℓ(A) ≤ ℓ(B), (22)

and it obeys the relations:

ℓ(∅) = 0; ℓ(Ω) = 1 (23)

ℓ(A ∪ B) − ℓ(A) − ℓ(B) + ℓ(A ∩ B) ≥ 0. (24)

From this follows that

ℓ(A) + ℓ(A) ≤ 1 (25)

For Kolmogorov probabilities 1− q(A) = q(A), but for lower probabilities the 1− ℓ(A) is a different from

ℓ(A), and we call it upper probability or plausibility u(A):

u(A) = 1 − ℓ(A) ≥ ℓ(A) (26)
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Using the equations above, we prove that

u(∅) = 0; u(Ω) = 1 (27)

A ⊆ B → u(A) ≤ u(B) (28)

u(A ∪ B) − u(A) − u(B) + u(A ∩ B) ≤ 0. (29)

From Eqs (24), (29) with A∩B = ∅, it follows that both the lower probability and the upper probability

are capacities.

The difference between the upper and lower probabilities, describes the ‘don’t know’ case:

d(A) = u(A) − ℓ(A) = 1 − ℓ(A) − ℓ(A). (30)

The upper probability combines the ‘true’ and the ‘don’t know’. Ref.[20] discusses the importance of the

‘don’t know’ category.

Remark III.1. In this section we have defined lower and upper probabilities on a powerset 2Ω, which is

a Boolean algebra. Therefore A = A, which implies that ℓ(A) = ℓ(A) and u(A) = u(A). Below we will

define lower and upper probabilities on a Heyting algebra, where a ≺ ¬¬a.

IV. SUBSYSTEMS OF Σ(n)

A. Embedding of subsystems

Σ(n) is a quantum system with positions and momenta in Z(n), and n-dimensional Hilbert space H(n).

|Xn; r〉 where r ∈ Z(n), is an orthonormal basis that we call ‘basis of position states’ (the Xn in this

notation is not a variable, but it simply indicates that they are position states). Through a Fourier

transform we get another orthonormal basis that we call momentum states[29]:

|Pn; r〉 = Fn|Xn; r〉; Fn = n−1/2
∑

r,s

ωn(rs)|Xn; r〉〈Xn; s|; ωn(r) = exp

(
i
2πr

n

)
(31)
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For m ≺ k ≺ n, the Σ(m) is a subsystem of Σ(k) (which we denote as Σ(m) ≺ Σ(k)), and the space

H(m) is a subspace of H(k) (which we denote as H(m) ≺ H(k)). We can embed the states of Σ(m) into

Σ(k), as follows:

Amk :
m−1∑

r=0

ar|Xm; r〉 →
m−1∑

r=0

ar|Xk;
kr

m
〉; m ≺ k. (32)

The system Σ(1) is physically trivial, as it has one-dimensional Hilbert space H(1) which consists of the

‘vacuum’ state |X1; 0〉 = |P1; 0〉.

We define the projector

P(m) =

m−1∑

r=0

|Xk;
kr

m
〉〈Xk;

kr

m
|; m ≺ k; m, k ∈ D(n). (33)

The map of Eq.(32), which identifies the state |Xm; r〉 in H(m) with the state |Xk; kr
m 〉 in H(k), implies

that we do not need to use an index k to denote this projector as Pk(m). Also Σ(n) is the largest system,

and therefore P(n) = 1n. All these projectors commute with each other.

B. The lattice Λ(Σn) of subsystems

Let Σn be the set of subsystems of Σ(n) and Hn the set of their Hilbert spaces:

Σn = {Σ(m) | m ∈ D(n)}

Hn = {H(m) | m ∈ D(n)}. (34)

Σn is a partially ordered set with partial order ‘subsystem’. Hn is a partially ordered set with partial

order ‘subspace’.

The set Σn with

Σ(m) ∧ Σ(k) = Σ(m ∧ k)

Σ(m) ∨ Σ(k) = Σ(m ∨ k)

¬Σ(m) = Σ(¬m); m, k ∈ D(n) (35)
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is a distributive lattice (Heyting algebra) with O = Σ(1) and I = Σ(n). It is isomorphic to Λ[D(n)] and

we denote it as Λ(Σn). The physical meaning of the connectives is (see also ref[9])

• Σ(m) ∨ Σ(k) is the smallest subsystem that contains both Σ(m) and Σ(k), and in this sense it

is the ‘coalition’ or ‘merger’ of these subsystems (they are terms used in the literature on the

Dempster-Shafer theory).

• Σ(m) ∧ Σ(k) is the largest common subsystem of Σ(m) and Σ(k).

• ¬Σ(m) is the maximal subsystem in Λ(Σn) such that [¬Σ(m)] ∧ Σ(m) = Σ(1). The ¬Σ(m) and

Σ(m) share only the lowest state |X1; 0〉.

In analogous way we define the logical operations in Hn, which is a Heyting algebra isomorphic to

Λ[D(n)] and Λ(Σn), and we denote it as Λ(Hn).

All logical operations are linked to commuting von Neumann measurements. For m, k ∈ D(n), the

P(m ∨ k) and P(m ∧ k) are projectors to the spaces of the systems Σ(m) ∨ Σ(k) and Σ(m) ∧ Σ(k),

correspondingly. Starting from a state of Σ(n), with these projectors we can get states in Σ(m) ∨ Σ(k)

and Σ(m) ∧ Σ(k). Also the P(¬m) is the projector to the space of the systems¬Σ(m).

The following proposition is a summary of results proved in [9] and we give it without proof:

Proposition IV.1. For variables in D(n):

(1)

H(m ∧ k) = H(m) ∩ H(k)

P(m ∧ k) = P(m)P(k)

P(m)P(¬m) = P(1) (36)

(2)

H(m1 ∨ m2) = T (m1, m2) ⊕ S(m1, m2). (37)
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The space T (m1, m2)

T (m1, m2) = span[H(m1) ∪ H(m2)] (38)

contains all superpositions of states in H(m1) and H(m2), and it is a subspace of the space H(m1∨

m2). The space S(m1, m2) is orthogonal to the space T (m1, m2) and contains disjunctions which

are not superpositions. The

T(m1, m2) = P(m1) + P(m2) − P(m1 ∧ m2) (39)

is projector to the space T (m1, m2), and the

S(m1, m2) = P(m1 ∨ m2) − T(m1, m2)

= P(m1 ∨ m2) − P(m1) − P(m2) + P(m1 ∧ m2), (40)

is projector to the space S(m1, m2). The dimension of the space S(m1, m2) is m1 ∨ m2 − m1 −

m2 +m1∧m2. In the special case that m1, m2 belong to the same chain, the dimension of the space

S(m1, m2) is 0.

Remark IV.2. The span[H(m1) ∪ H(m2)] contains superpositions of states |Xmi
; ai〉 where ai ∈ Z(mi)

and i = 1, 2, which when embedded into H(m1 ∨m2), become |Xm1∨m2
; diai〉 where di = (m1 ∨m2)/mi

(Eq.(32)). The disjunction (‘merger’) Σ(m1)∨Σ(m2), of two subsystems Σ(m1) and Σ(m2), is described

with the space H(m1 ∨ m2) which is larger than the span[H(m1) ∪ H(m2)], and it contains additional

states |Xm1∨m2
; a〉 with a ∈ Z

∗(m1 ∨ m2), which span the space S(m1, m2). This is related to the

fact that the group Z(m1 ∨ m2) contains the elements of both Z(m1) and Z(m2), plus the elements of

Z
∗(m1 ∨m2), as explained in section II C. Later, we will see the link between the space S(m1, m2), with

the supermodularity of ℓ(m|ρn) in Eq.(1).

We consider the system Σ(n) in a state described with the density matrix ρn, and define the

ℓ(m|ρn) = Tr[ρnP(m)]; σ(m1, m2|ρn) = Tr[ρnS(m1, m2)]; m, m1, m2 ∈ D(n), (41)
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We also exclude the lowest state from P(m) and define the

P̃(m) = P(m) − P(1); ℓ̃(m|ρn) = Tr[ρnP̃(m)]. (42)

We will use the notation Σ̃(m), for the subsystem Σ(m) when we calculate probabilities excluding the

lowest state. With this notation, the probabilities in Σ(m) and Σ̃(¬m) contain complementary informa-

tion.

Lemma IV.3. If m ≺ k then ℓ(m|ρn) ≤ ℓ(k|ρn).

Proof. From Eq.(36), it follows that P(m)P(k) = P(m ∧ k) = P(m). Therefore P(k) − P(m) is a

projector orthogonal to P(m) and

ℓ(k|ρn) = ℓ(m|ρn) + Tr{ρn[P(k) − P(m)]} (43)

where Tr{ρn[P(k) − P(m)]} is a non-negative number. This proves the lemma.

Proposition IV.4.

(1) The ℓ(m|ρn) obey the relation

ℓ(m1 ∨ m2|ρn) − ℓ(m1|ρn) − ℓ(m2|ρn) + ℓ(m1 ∧ m2|ρn) = σ(m1, m2|ρn). (44)

From this follows that they obey the supermodularity inequality of Eq.(1).

(2)

ℓ(m|ρn) + ℓ̃(¬m|ρn) ≤ ℓ(¬¬m|ρn) + ℓ̃(¬m|ρn) ≤ 1. (45)

Proof.

(1) This follows immediately from Eq.(40).
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(2) In the special case that m1 = ¬m and m2 = ¬¬m, Eq.(1) reduces to

1 − ℓ(¬m|ρn) − ℓ(¬¬m|ρn) + ℓ(1|ρn) ≥ 0. (46)

This proves one part of the inequality. The second part, follows immediately from lemma IV.3,

because m ≺ ¬¬m.

The supermodularity of ℓ(m|ρn) in Eq.(1), is related to the term σ(m1, m2|ρn) in Eq.(44), which is

related to the space S(m1, m2), and also to the fact that the group Z(m1 ∨ m2) contains not only the

elements of Z(m1) and Z(m2), but also the elements of Z
∗(m1 ∨ m2). Within a chain σ(m1, m2|ρn) = 0

for all density matrices, and the ℓ(m|ρn) obey Eq.(2) like Kolmogorov probabilities.

C. Example

We consider the Λ(Σ18) which comprises of the subsystems of Σ(18). The projectors to these subsys-

tems are

P(1) = |X18; 0〉〈X18; 0|

P(2) = |X18; 0〉〈X18; 0| + |X18; 9〉〈X18; 9|

P(3) = |X18; 0〉〈X18; 0| + |X18; 6〉〈X18; 6| + |X18; 12〉〈X18; 12|

P(6) =

5∑

ν=0

|X18; 3ν〉〈X18; 3ν|

P(9) =

8∑

ν=0

|X18; 2ν〉〈X18; 2ν|

P(18) = 1 (47)
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In this case we have 3 maximal contexts:

Σ18(1) = {Σ(18), Σ(9), Σ(3), Σ(1)}

Σ18(2) = {Σ(18), Σ(6), Σ(3), Σ(1)}

Σ18(3) = {Σ(18), Σ(6), Σ(2), Σ(1)} (48)

In Σ(18) we consider the state

ρ =

17∑

ν=0

aν |X18; ν〉〈X18; ν|;
17∑

ν=0

aν = 1; 0 ≤ aν ≤ 1, (49)

We intentionally choose a mixed state with no off-diagonal elements, in order to emphasize that our

arguments are not related to off-diagonal elements. In table III we give the ℓ(m|ρ) for all m ∈ D(18) (and

also the u(m|ρ) which is introduced later).

We next calculate the σ(m1, m2) of Eq.(44). We take into into account the easily proved properties

that σ(1, m|ρ) = σ(18, m|ρ) = 0, and that if m1 ≺ m2 then σ(m1, m2|ρ) = 0. We find that

σ(9, 6|ρ) = ℓ(18|ρ) − ℓ(9|ρ) − ℓ(6|ρ) + ℓ(3|ρ)

= a1 + a5 + a7 + a11 + a13 + a17;

σ(9, 2|ρ) = ℓ(18|ρ) − ℓ(9|ρ) − ℓ(2|ρ) + ℓ(1|ρ)

= a1 + a3 + a5 + a7 + a11 + a13 + a15 + a17;

σ(2, 3|ρ) = ℓ(6|ρ) − ℓ(2|ρ) − ℓ(3|ρ) + ℓ(1|ρ) = a3 + a15, (50)

and that the rest σ(m1, m2|ρ) = 0. These values show that the ℓ(m|ρ) is a supermodular function (and

therefore a superadditive function).
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V. LOWER AND UPPER QUANTUM PROBABILITIES

A. The statement ‘belongs in Σ(m)’ is not equivalent to ‘does not belong in ¬eΣ(m)’

Comparison of Eqs.(24),(25), for lower probabilities, with proposition IV.4 for quantum probabilities,

shows that the ℓ(m|ρn) where m ∈ D(n), has all the characteristics of a lower probability in the Dempster-

Shafer theory. The upper probability is given by

u(m|ρn) = 1 − ℓ̃(¬m|ρn) = 1 − ℓ(¬m|ρn) + ℓ(1|ρn). (51)

The ℓ(1|ρn) is added on the right hand side, so that u(1|ρn) = ℓ(1|ρn). For later use we also define the

ũ(m|ρn) = 1 − ℓ(¬m|ρn) = u(m|ρn) − ℓ(1|ρn). (52)

for which ũ(1|ρn) = 0.

Both ℓ(m|ρn) and u(m|ρn) can be measured with the von Neumann measurement

Q =
n−1∑

r=0

ar|Xn; r〉〈Xn; r|. (53)

We perform this measurement on many systems in the state ρn, and we count the number of times nr

that the system will collapse into the state |Xn; r〉. Then

ℓ(m|ρn) = lim
nT →∞

1

nT

∑

r∈L

nr; L =
{

0,
n

m
, ..., (m − 1)

n

m

}
⊆ U

u(m|ρn) = lim
nT →∞

1

nT

∑

r∈U

nr; U = Z(n) −
{ n

¬m
, ..., (¬m − 1)

n

¬m

}

nT =
n−1∑

s=0

ns (54)

In ℓ(m|ρn) we take r ∈ L, which means that the collapsed state belongs entirely in Σ(m) (as embedded

into Σ(n)). In u(m|ρn) we take r ∈ U , which means that the collapsed state does not belong in ¬Σ̃(m) =

Σ̃(¬m). The statement ‘belongs in Σ(m)’ is different from the statement ‘does not belong in ¬Σ̃(m)’, and
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this is the reason for introducing lower and upper probabilities. In contrast, in Kolmogorov’s probability

defined on the Boolean algebra associated with a powerset 2Ω, the statement ‘belongs to A ⊆ Ω’ is

equivalent to the statement ‘does not belong to A = Ω − A’ (i.e., q(A) = 1 − q(A)).

The difference between upper and lower probabilities is

d(m|ρn) = u(m|ρn) − ℓ(m|ρn) = Tr[ρnD(m)]; m ∈ D(n)

D(m) = 1n − P(m) − P̃(¬m) = 1n + S(m,¬m) − P(m ∨ ¬m)

D(m)P(m) = 0; D(m)[1n − P(m)] = D(m). (55)

In the Dempster terminology, d(m|ρn) and D(m) could be called ‘don’t know’ probability and ‘don’t

know’ projector, correspondingly.

The d(m|ρn) can be calculated from the outcomes of the von Neumann measurement of Eq.(53), as

follows:

u(m|ρn) = lim
nT →∞

1

nT

∑

r

nr; r ∈ U − L (56)

Ambiguity and multivaluedness: There are many probabilities between ℓ(m|ρn) and u(m|ρn) which

can be calculated using the outcomes nr from the von Neumann measurement of Eq.(53). For example,

in Eq.(54) we can use r ∈ S where

S = {0,
n

k
, ..., (k − 1)

n

k
}; m ≺ k ≺ ¬¬m; L ⊆ S ⊆ U (57)

All these measurements show the ‘Dempster multivaluedness’ [19] in the present formalism. For each

subsystem Σ(m) we have an interval of probabilities [ℓ(m|ρn), u(m|ρn)] which shows the existence of

ambiguity. This is an extra level of incertitude which is different from the usual uncertainties of non-

commuting variables.
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B. Lower and upper quantum probabilities as capacities in D(n)

Proposition V.1. Let A = {m1, ..., mr} ⊆ D(n). The lower and upper probabilities with

ℓ(A|ρn) = ℓ(m1 ∨ ... ∨ mr|ρn)

u(A|ρn) = u(m1 ∨ ... ∨ mr|ρn)

ℓ(∅|ρn) = u(∅|ρn) = 0 (58)

are capacities in D(n).

Proof. Let mA, mB be the disjunctions (least common multipliers) of all elements in the sets A ⊆ B ⊆

D(n). Then mA ≺ mB and therefore ℓ(mA|ρn) ≤ ℓ(mB|ρn) (lemma IV.3). This completes the proof for

lower probabilities.

If m ≺ k, then ¬k ≺ ¬m, and therefore u(m|ρn) ≤ u(k|ρn). This shows that lemma IV.3 holds for

upper probabilities, also. Then the proof of the proposition for upper probabilities, is similar to the one

above for lower probabilities.

In analogy to Eq.(16), we introduce the quantity

L(m; k|ρn) = ℓ(m ∨ k|ρn) − ℓ(k|ρn) (59)

This quantifies the ‘added value’ to the subsystem Σ(m), if it combines with the system Σ(k), into the

larger system Σ(m ∨ k) (see remark IV.2). In the case of coprime k, m, the L(k; m|ρn) − ℓ̃(m|ρn) is a

measure of the non-additivity of the lower probabilities.

If Σ(m) is a subsystem of Σ(k) (i.e., m ≺ k), then L(m; k|ρn) = 0. In this case adding Σ(m) to Σ(k)

does not have any effect, because Σ(m) is already a part of Σ(k). Also

L(m; k ∧ m|ρn) = ℓ(m|ρn) − ℓ(k ∧ m|ρn)

L(m; k|ρn) + L(m; k ∧ m|ρn) = ℓ(m ∨ k|ρn) − ℓ(m|ρn) − ℓ(k|ρn) + ℓ(m ∧ k|ρn). (60)

Therefore the L(m; k|ρn) + L(m; k ∧ m|ρn) is a measure of the deviation from the modularity property
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of Eq.(2).

Example: We consider the example discussed earlier in section IVC. In table III we give the lower

and upper probabilities ℓ(m|ρ) and u(m|ρ) for all m ∈ D(18). Using these values we calculate as an

example, the L(2; 3|ρ) and the L(2; 3|ρ) − ℓ̃(2|ρ). We find

L(2; 3|ρ) = ℓ(6|ρ) − ℓ(3|ρ) = a3 + a9 + a15

L(2; 3|ρ) − ℓ̃(2|ρ) = a3 + a15. (61)

The L(2; 3|ρ) − ℓ̃(2|ρ) is an example of the non-additive nature of the probabilities ℓ(m|ρ).

C. Properties of the lower and upper quantum probabilities

We first point out that

u(1|ρn) = ℓ(1|ρn); u(n|ρn) = ℓ(n|ρn) = 1. (62)

We next introduce the

ℓ(m|ρn) = ℓ(¬m|ρn) − ℓ(1|ρn) = ℓ̃(¬m|ρn)

u(m|ρn) = u(¬m|ρn) − u(1|ρn) = 1 − ℓ(¬¬m) (63)

They are the analogues of ℓ(A) and u(A) in section III.

Proposition V.2.

(1) The upper probabilities u(m|ρn) obey the relation

u(m1 ∨ m2|ρn) − u(m1|ρn) − u(m2|ρn) + u(m1 ∧ m2|ρn) = −σ(¬m1,¬m2|ρn). (64)

(2)

ℓ(m|ρn) + ℓ(m|ρn) ≤ 1 ≤ u(m|ρn) + u(m|ρn) (65)
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(3)

u(m|ρn) = u(¬¬m|ρn)

ℓ(¬¬m|ρn) − ℓ(m|ρn) = u(m|ρn) − u(¬m|ρn) ≥ 0. (66)

(4) If m ≺ k ≺ ¬¬m then ℓ(m) ≤ ℓ(k) ≤ u(m).

(5) If

n = p
e1(n)
1 ...p

eN (n)
N ; m = p

e1(m)
1 ...p

eN (m)
N ; 1 ≤ ei(m) ≤ ei(n) (67)

them u(m) = 1

Proof.

(1) This follows from Eqs(44), (51).

(2) This is proved using Eq.(45).

(3) Using Eq.(51), we get

u(¬¬m|ρn) = 1 − ℓ(¬¬¬m|ρn) + ℓ(1|ρn) = 1 − ℓ(¬m|ρn) + ℓ(1|ρn) = u(m|ρn). (68)

Also

u(m|ρn) − u(¬m|ρn) = [1 − ℓ(¬m|ρn) + ℓ(1|ρn)] − [1 − ℓ(¬¬m|ρn) + ℓ(1|ρn)]

= ℓ(¬¬m|ρn) − ℓ(m|ρn) (69)

The right hand side is non-negative according to proposition IV.3 and the fact that m ≺ ¬¬m.

(4) Eq.(1) with m1 = ¬m and m2 = k gives

ℓ(¬m|ρn) + ℓ(k|ρn) ≤ ℓ(¬m ∨ k|ρn) + ℓ(¬m ∧ k|ρn) (70)
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But from k ≺ ¬¬m it follows that k ∧ m ≺ ¬¬m ∧ m = 1 and therefore ℓ(¬m ∧ k|ρn) = ℓ(1|ρn).

We rewrite Eq.(70) as

ℓ(¬m|ρn) + ℓ(k|ρn) ≤ ℓ(¬m ∨ k|ρn) + ℓ(1|ρn) ≤ 1 + ℓ(1|ρn) (71)

and from this follows that ℓ(k) ≤ u(m). Also, since m ≺ k we get ℓ(m) ≤ ℓ(k) (proposition IV.3).

(5) From Eq.(67), it follows that ¬m = 1 and therefore u(m) = 1.

Remark V.3.

(1) The lower and upper probabilities in section III, are defined on a Boolean algebra, and therefore

A = A, which implies that ℓ(A) = ℓ(A) and u(A) = u(A). The analogue of this in our case which

is a Heyting algebra, is Eq.(66).

(2) From Eq.(64), it follows that the upper probabilities obey the submodularity inequality

u(m1 ∨ m2|ρn) − u(m1|ρn) − u(m2|ρn) + u(m1 ∧ m2|ρn) ≤ 0. (72)

VI. DISCUSSION

We have considered the distributive lattice Λ(Σn) of subsystems of Σ(n). We have shown that with

respect to this lattice, the lower and upper probabilities of the Dempster-Shafer approach, describe very

well the quantum probabilities ℓ(m|ρn), for the following reasons:

• For Kolmogorov probabilities q(A) = 1−q(A) (Eq.(21)), but for lower probabilities ℓ(A) is different

from the 1−ℓ(A) (Eq.(25)). The latter fits with the fact that in quantum systems ‘belongs in Σ(m)’

is not the same as ‘does not belong in ¬Σ̃(m)’.

• Kolmogorov probabilities satisfy the modularity equality of Eq.(2), but lower probabilities satisfy

the supermodularity inequality of Eq.(24). The latter fits with the fact that the quantum proba-

bilities ℓ(m|ρn) satisfy the supermodularity inequality of Eq.(1).
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• There is multivaluedness and ambiguity (extra level of uncertainty, beyond the one associated

with non-commuting variables) in quantum mechanics. The Dempster-Shafer theory is designed to

describe similar situations in the classical world, and in this paper we applied it to the quantum

world.

There is a long history of attempts to use more general (than Kolmogorov) probabilistic theories in

quantum mechanics[30–36]. Operational approaches and convex geometry methods have been studied

in [37–41]. Fuzzy phase spaces have been studied in [44–46]. Test spaces have been studied in [42,

43]. Category theory methods have been studied in [47, 48]. Topos theory methods have been used

in [49, 50]. In this paper we have used the Dempster-Shafer theory, for quantum probabilities in the

distributive lattice of subsystems. The Dempster-Shafer theory, for quantum probabilities in the Birkhoff-

von Neumann orthomodular lattice of subspaces will be discussed elsewhere[51]
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TABLE I: The project marks for four students S1, S2, S3, S4

S1 60 65 72

S2 70 72

S3 61 65 68

S4 50 55 58 62

TABLE II: The lower and upper probabilities corresponding to the sets A1, A2, A1 ∪ A2, A3 of Eq.(17)

A1 A2 A1 ∪ A2 A3

ℓ(Ai) 1/4 1/4 3/4 1/4

u(Ai) 3/4 1/2 1 1

TABLE III: The lower and upper probabilities for example IVC

m ℓ(m|ρ) u(m|ρ)

1 a0 a0

2 a0 + a9 a0 +
∑8

ν=0 a2ν+1

3 a0 + a6 + a12

∑
aν ; ν 6= 9

6
∑5

ν=0 a3ν 1

9
∑8

ν=0 a2ν

∑
aν ; ν 6= 9

18 1 1


