103 research outputs found

    A Natural Basis of States for the Noncommutative Sphere and its Moyal bracket

    Full text link
    An infinite dimensional algebra which is a non-decomposable reducible representation of su(2)su(2) is given. This algebra is defined with respect to two real parameters. If one of these parameters is zero the algebra is the commutative algebra of functions on the sphere, otherwise it is a noncommutative analogue. This is an extension of the algebra normally refered to as the (Berezin) quantum sphere or ``fuzzy'' sphere. A natural indefinite ``inner'' product and a basis of the algebra orthogonal with respect to it are given. The basis elements are homogenious polynomials, eigenvectors of a Laplacian, and related to the Hahn polynomials. It is shown that these elements tend to the spherical harmonics for the sphere. A Moyal bracket is constructed and shown to be the standard Moyal bracket for the sphere.Comment: 18 pages Latex, No figures, Submitted to Journal of Mathematical Physics, March 199

    Non Commutative Differential Geometry, and the Matrix Representations of Generalised Algebras

    Full text link
    The underlying algebra for a noncommutative geometry is taken to be a matrix algebra, and the set of derivatives the adjoint of a subset of traceless matrices. This is sufficient to calculate the dual 1-forms, and show that the space of 1-forms is a free module over the algebra of matrices. The concept of a generalised algebra is defined and it is shown that this is required in order for the space of 2-forms to exist. The exterior derivative is generalised for higher order forms and these are also shown to be free modules over the matrix algebra. Examples of mappings that preserve the differential structure are given. Also given are four examples of matrix generalised algebras, and the corresponding noncommutative geometries, including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a qq-deformed algebra.Comment: 16 pages Latex, No figures. Accepted for publication: Journal of Physics and Geometry, March 199

    A kinetic model of radiating electrons

    Get PDF
    A kinetic theory is developed to describe radiating electrons whose motion is governed by the Lorentz-Dirac equation. This gives rise to a generalized Vlasov equation coupled to an equation for the evolution of the physical submanifold of phase space. The pathological solutions of the 1-particle theory may be removed by expanding the latter equation in powers of τ ≔ q 2/6πm. The radiation-induced change in entropy is explored and its physical origin is discussed. As a simple demonstration of the theory, the radiative damping rate of longitudinal plasma waves is calculated

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    Weakly coupled states on branching graphs

    Full text link
    We consider a Schr\"odinger particle on a graph consisting of N\,N\, links joined at a single point. Each link supports a real locally integrable potential Vj\,V_j\,; the self--adjointness is ensured by the δ\,\delta\, type boundary condition at the vertex. If all the links are semiinfinite and ideally coupled, the potential decays as x1ϵ\,x^{-1-\epsilon} along each of them, is non--repulsive in the mean and weak enough, the corresponding Schr\"odinger operator has a single negative eigenvalue; we find its asymptotic behavior. We also derive a bound on the number of bound states and explain how the δ\,\delta\, coupling constant may be interpreted in terms of a family of squeezed potentials.Comment: LaTeX file, 7 pages, no figure

    Band spectra of rectangular graph superlattices

    Full text link
    We consider rectangular graph superlattices of sides l1, l2 with the wavefunction coupling at the junctions either of the delta type, when they are continuous and the sum of their derivatives is proportional to the common value at the junction with a coupling constant alpha, or the "delta-prime-S" type with the roles of functions and derivatives reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratio theta := l1/l2. If the latter is an irrational badly approximable by rationals, delta lattices have no gaps in the weak-coupling case. We show that there is a quantization for the asymptotic critical values of alpha at which new gap series open, and explain it in terms of number-theoretic properties of theta. We also show how the irregularity is manifested in terms of Fermi-surface dependence on energy, and possible localization properties under influence of an external electric field. KEYWORDS: Schroedinger operators, graphs, band spectra, fractals, quasiperiodic systems, number-theoretic properties, contact interactions, delta coupling, delta-prime coupling.Comment: 16 pages, LaTe

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit NN\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache

    Kirchhoff's Rule for Quantum Wires

    Full text link
    In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with nn open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with nn channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0E>0 is explicitly given in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low energy behaviour of one theory gives the high energy behaviour of the transformed theory. Finally we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs only use known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitean symplectic forms.Comment: 40 page
    corecore