Abstract

We consider a Schr\"odinger particle on a graph consisting of N\,N\, links joined at a single point. Each link supports a real locally integrable potential Vj\,V_j\,; the self--adjointness is ensured by the δ\,\delta\, type boundary condition at the vertex. If all the links are semiinfinite and ideally coupled, the potential decays as x1ϵ\,x^{-1-\epsilon} along each of them, is non--repulsive in the mean and weak enough, the corresponding Schr\"odinger operator has a single negative eigenvalue; we find its asymptotic behavior. We also derive a bound on the number of bound states and explain how the δ\,\delta\, coupling constant may be interpreted in terms of a family of squeezed potentials.Comment: LaTeX file, 7 pages, no figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020