We study transport in quantum systems consisting of a finite array of N
identical single-channel scatterers. A general expression of the S matrix in
terms of the individual-element data obtained recently for potential scattering
is rederived in this wider context. It shows in particular how the band
spectrum of the infinite periodic system arises in the limit N→∞. We
illustrate the result on two kinds of examples. The first are serial graphs
obtained by chaining loops or T-junctions. A detailed discussion is presented
for a finite-periodic "comb"; we show how the resonance poles can be computed
within the Krein formula approach. Another example concerns geometric
scatterers where the individual element consists of a surface with a pair of
leads; we show that apart of the resonances coming from the decoupled-surface
eigenvalues such scatterers exhibit the high-energy behavior typical for the
delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg
figures attache