41 research outputs found

    Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain

    Get PDF
    RNA polymerase II (Pol II) can associate with regulatory elements far from promoters. For the murine β-globin locus, Pol II binds the β-globin locus control region (LCR) far upstream of the β-globin promoters, independent of recruitment to and activation of the βmajor promoter. We describe here an analysis of where Pol II resides within the LCR, how it is recruited to the LCR, and the functional consequences of recruitment. High-resolution analysis of the distribution of Pol II revealed that Pol II binding within the LCR is restricted to the hypersensitive sites. Blocking elongation eliminated the synthesis of genic and extragenic transcripts and eliminated Pol II from the βmajor open reading frame. However, the elongation blockade did not redistribute Pol II at the hypersensitive sites, suggesting that Pol II is recruited to these sites. The distribution of Pol II did not strictly correlate with the distributions of histone acetylation and methylation. As Pol II associates with histone-modifying enzymes, Pol II tracking might be critical for establishing and maintaining broad histone modification patterns. However, blocking elongation did not disrupt the histone modification pattern of the β-globin locus, indicating that Pol II tracking is not required to maintain the pattern

    A Single cis Element Maintains Repression of the Key Developmental Regulator Gata2

    Get PDF
    In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element −1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the −1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the −1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed

    Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development

    Get PDF
    Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI).S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the Delta simA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development.Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement. The M-like protein mutant created in this research holds promise as live-attenuated vaccine

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care

    Molecular Determinants of NOTCH4 Transcription in Vascular Endothelium

    No full text
    The process whereby the primitive vascular network develops into the mature vasculature, known as angiogenic vascular remodeling, is controlled by the Notch signaling pathway. Of the two mammalian Notch receptors expressed in vascular endothelium, Notch1 is broadly expressed in diverse cell types, whereas Notch4 is preferentially expressed in endothelial cells. As mechanisms that confer Notch4 expression were unknown, we investigated how NOTCH4 transcription is regulated in human endothelial cells and in transgenic mice. The NOTCH4 promoter and the 5′ portion of NOTCH4 assembled into an endothelial cell-specific histone modification pattern. Analysis of NOTCH4 primary transcripts in human umbilical vein endothelial cells by RNA fluorescence in situ hybridization revealed that 36% of the cells transcribed one or both NOTCH4 alleles. The NOTCH4 promoter was sufficient to confer endothelial cell-specific transcription in transfection assays, but intron 1 or upstream sequences were required for expression in the vasculature of transgenic mouse embryos. Cell-type-specific activator protein 1 (AP-1) complexes occupied NOTCH4 chromatin and conferred endothelial cell-specific transcription. Vascular angiogenic factors activated AP-1 and reprogrammed the endogenous NOTCH4 gene in HeLa cells from a repressed to a transcriptionally active state. These results reveal an AP-1-Notch4 pathway, which we propose to be crucial for transducing angiogenic signals and to be deregulated upon aberrant signal transduction in cancer

    Context-dependent function of GATA switch sites in vivo.

    No full text
    Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo
    corecore