206 research outputs found

    Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis

    Get PDF
    BACKGROUND: L-arginine is the common substrate for nitric oxide synthases and arginases. Increased arginase levels in the blood of patients with cystic fibrosis may result in L-arginine deficiency and thereby contribute to low airway nitric oxide formation and impaired pulmonary function. METHODS: Plasma amino acid and arginase levels were studied in ten patients with cystic fibrosis before and after 14 days of antibiotic treatment for pulmonary exacerbation. Patients were compared to ten healthy non-smoking controls. RESULTS: Systemic arginase levels measured by ELISA were significantly increased in cystic fibrosis with exacerbation compared to controls (17.3 ± 12.0 vs. 4.3 ± 3.4 ng/ml, p < 0.02). Arginase levels normalized with antibiotic treatment. Plasma L-arginine was significantly reduced before (p < 0.05) but not after treatment. In contrast, L-ornithine, proline, and glutamic acid, all downstream products of arginase activity, were normal before, but significantly increased after antibiotic therapy. Bioavailability of L-arginine was significantly reduced in cystic fibrosis before and after exacerbation (p < 0.05, respectively). CONCLUSION: These observations provide further evidence for a disturbed balance between the L-arginine metabolic pathways in cystic fibrosis

    Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion

    Get PDF
    [1] The Himalayan crystalline core zone exposed along the Sutlej Valley (India) is composed of two high‐grade metamorphic gneiss sheets that were successively underthrusted and tectonically extruded, as a consequence of the foreland‐directed propagation of crustal deformation in the Indian plate margin. The High Himalayan Crystalline Sequence (HHCS) is composed of amphibolite facies to migmatitic paragneisses, metamorphosed at temperatures up to 750°C at 30 km depth between Eocene and early Miocene. During early Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the HHCS, whereas exhumation was mainly controlled by erosion since middle Miocene. The Lesser Himalayan Crystalline Sequence (LHCS) is composed of amphibolite facies para‐ and orthogneisses, metamorphosed at temperatures up to 700°C during underthrusting down to 30 km depth beneath the MCT. The LHCS cooled very rapidly since late Miocene, as a consequence of exhumation controlled by thrusting along the Munsiari Thrust and extension in the MCT hanging wall. This renewed phase of tectonic extrusion at the Himalayan front is still active, as indicated by the present‐day regional seismicity, and by hydrothermal circulation linked to elevated near‐surface geothermal gradients in the LHCS. As recently evidenced in the Himalayan syntaxes, active exhumation of deep crustal rocks along the Sutlej Valley is spatially correlated with the high erosional potential of this major trans‐Himalayan river. This correlation supports the emerging view of a positive feedback during continental collision between crustal‐scale tectono‐thermal reworking and efficient erosion along major river systems

    Serum methylarginines and spirometry-measured lung function in older adults

    Get PDF
    Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function

    Nitric oxide: a pro-inflammatory mediator in lung disease?

    Get PDF
    Inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO•) and increased indices of NO• -dependent oxidative stress. Although NO• is known to have anti-microbial, anti-inflammatory and anti-oxidant properties, various lines of evidence support the contribution of NO• to lung injury in several disease models. On the basis of biochemical evidence, it is often presumed that such NO• -dependent oxidations are due to the formation of the oxidant peroxynitrite, although alternative mechanisms involving the phagocyte-derived heme proteins myeloperoxidase and eosinophil peroxidase might be operative during conditions of inflammation. Because of the overwhelming literature on NO• generation and activities in the respiratory tract, it would be beyond the scope of this commentary to review this area comprehensively. Instead, it focuses on recent evidence and concepts of the presumed contribution of NO• to inflammatory diseases of the lung

    Human Cysteine Cathepsins Are Not Reliable Markers of Infection by Pseudomonas aeruginosa in Cystic Fibrosis

    Get PDF
    Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Ps−) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (∼2-fold) in the Ps+ and Ps− groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps− samples, despite the possible release of the ∼31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection

    Reference values for exhaled nitric oxide (reveno) study

    Get PDF
    BACKGROUND: Despite the widespread use of fractional exhaled nitric oxide (FE(NO)) as a biomarker of airways inflammation, there are no published papers describing normal FE(NO )values in a large group of healthy adults. OBJECTIVE: The aim of this study was to establish adult FE(NO )reference values according to the international guidelines. METHODS: FE(NO )was measured in 204 healthy, non-smoking adults with normal spirometry values using the on-line single-breath technique, and the results were analysed chemiluminescently. RESULTS: The main result of the study was the significant difference in FE(NO )values between men and women, thus indicating that gender-based reference FE(NO )values are necessary. The FE(NO )levels obtained at expiratory flows of 50 ml/s ranged from 2.6 to 28.8 ppb in men, and from 1.6 to 21.5 ppb in women. CONCLUSION: We propose reference FE(NO )values for healthy adult men and women that could be used for clinical and research purposes

    CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. METHODS: The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). RESULTS: PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. CONCLUSIONS: CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity

    Nutrient Availability as a Mechanism for Selection of Antibiotic Tolerant Pseudomonas aeruginosa within the CF Airway

    Get PDF
    Microbes are subjected to selective pressures during chronic infections of host tissues. Pseudomonas aeruginosa isolates with inactivating mutations in the transcriptional regulator LasR are frequently selected within the airways of people with cystic fibrosis (CF), and infection with these isolates has been associated with poorer lung function outcomes. The mechanisms underlying selection for lasR mutation are unknown but have been postulated to involve the abundance of specific nutrients within CF airway secretions. We characterized lasR mutant P. aeruginosa strains and isolates to identify conditions found in CF airways that select for growth of lasR mutants. Relative to wild-type P. aeruginosa, lasR mutants exhibited a dramatic metabolic shift, including decreased oxygen consumption and increased nitrate utilization, that is predicted to confer increased fitness within the nutrient conditions known to occur in CF airways. This metabolic shift exhibited by lasR mutants conferred resistance to two antibiotics used frequently in CF care, tobramycin and ciprofloxacin, even under oxygen-dependent growth conditions, yet selection for these mutants in vitro did not require preceding antibiotic exposure. The selection for loss of LasR function in vivo, and the associated adverse clinical impact, could be due to increased bacterial growth in the oxygen-poor and nitrate-rich CF airway, and from the resulting resistance to therapeutic antibiotics. The metabolic similarities among diverse chronic infection-adapted bacteria suggest a common mode of adaptation and antibiotic resistance during chronic infection that is primarily driven by bacterial metabolic shifts in response to nutrient availability within host tissues

    Lung Clearance Index to Track Acute Respiratory Events in School-Age Children with Cystic Fibrosis

    Get PDF
    Rationale: The lung clearance index (LCI) is responsive to acute respiratory events in preschool children with cystic fibrosis (CF), but its utility to identify and manage these events in school-age children with CF is not well defined. Objectives: To describe changes in LCI with acute respiratory events in school-age children with CF. Methods: In a multisite prospective observational study, the LCI and FEV1 were measured quarterly and during acute respiratory events. Linear regression was used to compare relative changes in LCI and FEV1% predicted at acute respiratory events. Logistic regression was used to compare the odds of a significant worsening in LCI and FEV1% predicted at acute respiratory events. Generalized estimating equation models were used to account for repeated events in the same subject. Measurements and Main Results: A total of 98 children with CF were followed for 2 years. There were 265 acute respiratory events. Relative to a stable baseline measure, LCI (+8.9%; 95% confidence interval, 6.5 to 11.3) and FEV1% predicted (−6.6%; 95% confidence interval, −8.3 to −5.0) worsened with acute respiratory events. A greater proportion of events had a worsening in LCI compared with a decline in FEV1% predicted (41.7% vs. 30.0%; P = 0.012); 53.9% of events were associated with worsening in LCI or FEV1. Neither LCI nor FEV1 recovered to baseline values at the next follow-up visit. Conclusions: In school-age children with CF, the LCI is a sensitive measure to assess lung function worsening with acute respiratory events and incomplete recovery at follow-up. In combination, the LCI and FEV1 capture a higher proportion of events with functional impairment
    corecore