15 research outputs found

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5’-KMT2A, two patients had a 5’-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.publishedVersionPeer reviewe

    NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951

    No full text
    Risk-adjusted treatment stratification in T-cell acute lymphoblastic leukemias (T-ALLs) is currently based only on early response to chemotherapy. We investigated the prognostic implication of hyperactivation of NOTCH pathway resulting from mutations of NOTCH1 or FBXW7 in children with T-ALL enrolled in EORTC-CLG trials. Overall, 80 out of 134 (60%) patients were NOTCH+ (NOTCH1 and/or FBXW7 mutated). Although clinical presentations were not significantly associated with NOTCH status, NOTCH+ patients showed a better early response to chemotherapy as compared with NOTCH- patients, according to the rate of poor pre-phase 'responders' (25% versus 44%; P=0.02) and the incidence of high minimal residual disease (MRD) levels (11% (7/62) versus 32% (10/31); P=0.01) at completion of induction. However, the outcome of NOTCH+ patients was similar to that of NOTCH- patients, with a 5-year event-free survival (EFS) of 73% and 70% (P=0.82), and 5-year overall survival of 82% and 79% (P=0.62), respectively. In patients with high MRD levels, the 5-year EFS rate was 0% (NOTCH+) versus 42% (NOTCH-), whereas in those with low MRD levels, the outcome was similar: 76% (NOTCH+) versus 78% (NOTCH+). The incidence of isolated central nervous system (CNS) relapses was relatively high in NOTCH+ patients (8.3%), which could be related to a higher propensity of NOTCH+ leukemic blasts to target the CNS

    PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study

    No full text
    Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count

    In vivo NMR microscopy allows short-term serial assessment of multiple skeletal implications of corticosteroid exposure

    No full text
    Corticosteroids are in widespread clinical use but are known to have adverse skeletal side effects. Moreover, it is not known how soon these effects become apparent. Here, we describe a longitudinal approach to evaluate the short-term implications of excess corticosteroid exposure by quantitative in vivo magnetic resonance imaging and spectroscopy in conjunction with digital image processing and analysis in a rabbit model. Two-week treatment with dexamethasone induced a significant reduction in trabecular bone volume, which occurred at the expense of uniform trabecular thinning without affecting network architecture. Paralleling the loss in bone volume was conversion of hematopoietic to yellow marrow in the femoral metaphysis and atrophy of the femoral epiphyseal growth plate. This work demonstrates that detailed quantitative morphometric and physiological information can be obtained noninvasively at multiple skeletal locations. The method is likely to eventually replace invasive histomorphometry in that it obviates the need to sacrifice groups of animals at multiple time points. Finally, this work, which was performed on a clinical scanner, has implications for evaluating patients on high-dose steroid treatment
    corecore