16 research outputs found

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5’-KMT2A, two patients had a 5’-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.publishedVersionPeer reviewe

    Improved outcome of children transplanted for high-risk leukemia by using a new strategy of cyclosporine-based GVHD prophylaxis

    No full text
    International audienceThere is currently a major concern regarding the optimal immunosuppression therapy to be administered after hematopoietic stem cell transplantation (HSCT) to reduce both the toxicity of GvHD and the rate of relapse. We report the outcome of high-risk leukemia children transplanted with a new way of managing cyclosporine (CsA)-based GvHD prophylaxis. A total of 110 HSCT in 109 ALL or AML children who received CsA without mycophenolate or methotrexate in matched related as well as in matched or mismatched unrelated stem cell transplantation were included. CsA dosage regimens were individualized to obtain specific trough blood concentrations values. The incidences of grade I-II and III-IV acute GvHD were 69.1% and 1.8%, respectively, and 8.4% for chronic GvHD. GvHD was neither more frequent nor severe in unrelated than in related HSCT. GvHD occurred in 87% of patients with a mean CsA trough concentration â©˝120 ng/mL versus 43% with concentration >120 ng/mL (P<0.0001). Five-year disease-free survival (DFS) and overall survival were 78% and 83.6%, respectively. DFS was 76.9% for ALL and 80.4% for AML patients. There was no difference in DFS between matched siblings and matched unrelated or mismatched unrelated HSCT. DFS in patients with minimal residual disease (MRD) â©ľ10(-3) and in those with MRD <10(-3) before SCT was comparable. Our results indicate that a GvHD prophylaxis regimen based on CsA without mycophenolate or methotrexate is safe and effective whatever the donor compatibility is. These results suggest that GvL effect may be enhanced by this strategy of GvHD prophylaxis

    NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951

    No full text
    Risk-adjusted treatment stratification in T-cell acute lymphoblastic leukemias (T-ALLs) is currently based only on early response to chemotherapy. We investigated the prognostic implication of hyperactivation of NOTCH pathway resulting from mutations of NOTCH1 or FBXW7 in children with T-ALL enrolled in EORTC-CLG trials. Overall, 80 out of 134 (60%) patients were NOTCH+ (NOTCH1 and/or FBXW7 mutated). Although clinical presentations were not significantly associated with NOTCH status, NOTCH+ patients showed a better early response to chemotherapy as compared with NOTCH- patients, according to the rate of poor pre-phase 'responders' (25% versus 44%; P=0.02) and the incidence of high minimal residual disease (MRD) levels (11% (7/62) versus 32% (10/31); P=0.01) at completion of induction. However, the outcome of NOTCH+ patients was similar to that of NOTCH- patients, with a 5-year event-free survival (EFS) of 73% and 70% (P=0.82), and 5-year overall survival of 82% and 79% (P=0.62), respectively. In patients with high MRD levels, the 5-year EFS rate was 0% (NOTCH+) versus 42% (NOTCH-), whereas in those with low MRD levels, the outcome was similar: 76% (NOTCH+) versus 78% (NOTCH+). The incidence of isolated central nervous system (CNS) relapses was relatively high in NOTCH+ patients (8.3%), which could be related to a higher propensity of NOTCH+ leukemic blasts to target the CNS

    PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study

    No full text
    Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count
    corecore