95 research outputs found

    New approach for range measurements of induced magnetic interactions in Pd

    Get PDF

    EI Eridani: a star under the influence -- The effect of magnetic activity in the short and long term

    Get PDF
    We use our photometric time series of more than forty years to analyze the long-term behaviour of EI Eri. Flare activity is investigated using space-borne photometric data obtained with TESS. The MUSICOS campaign aimed to achieve high-resolution spectroscopic observations from many sites around the globe, so that uninterrupted phase coverage of EI Eri became available. We use these data to reconstruct successive surface temperature maps of the star in order to study the changes of starspots on a very short timescale. We use long-term, seasonal period analysis of our photometric time series to study changes in the rotational period. Short-term Fourier-transform is also applied to look for activity cycle-like changes. We also study the phase and frequency distribution of hand-selected flares. We apply our multi-line Doppler imaging code to reconstruct four consecutive Doppler images. These images are also used to measure surface differential rotation by our cross-correlation technique. In addition, we carry out tests to demonstrate how Doppler imaging is affected by the fact that the data came from several different instruments with different spectral resolutions. Seasonal period analysis of the light curve reveals a smooth, significant change in period, possibly indicating the evolution of active latitudes. Temperature curves from B−VB-V and V−IV-I show slight differences, indicating the activity of EI Eri is spot dominated. Short-term Fourier transform reveals smoothly changing cycles between 4.5--5.5 and 8.9--11.6 years. The time-resolved spotted surface of EI Eri from Doppler imaging enabled us to follow the evolution of the different surface features. Cross-correlating the consecutive Doppler maps reveal surface shear of α=0.036±0.007\alpha=0.036\pm0.007. Our tests validate our approach and show that the surface temperature distribution is adequately reconstructed by our method.Comment: 14 pages, 13 figures, A&A accepte

    GU Boo: A New 0.6 Msun Detached Eclipsing Binary

    Full text link
    We have found a new low-mass, double-lined, detached eclipsing binary, GU Boo, among a sample of new variables from the ROTSE-I database. The binary has an orbital period of 0.488728 +/- 0.000002 days, and estimated apparent magnitudes Vrotse = 13.7 and I = 11.8. Our analysis of the light and radial velocity curves of the system yields individual masses and radii of M1= 0.610 +/- 0.007 Msun, M2 = 0.599 +/- 0.006 Msun, R1= 0.623 +/- 0.016 Rsun, R2= 0.620 +/- 0.020 Rsun. The stars in GU Boo are therefore very similar to the components of the eclipsing binary YY Gem. For this study we have adopted a mean effective temperature for the binary of Teff = 3870 +/- 130 K. Based on its space velocities we suggest that GU Boo is a main sequence binary, possibly with an age of several Gyr. The metallicity of the binary is not well constrained at this point but we speculate that it should not be very different from solar. We have compared the physical parameters of GU Boo with current low-mass stellar models, where we accounted for uncertainties in age and metallicity by considering a wide range of values for those parameters. Our comparisons reveal that all the models underestimate the radii of the components of GU Boo by at least 10-15%. This result is in agreement with the recent studies of YY Gem and CU Cnc.Comment: 41 pages, 10 figures, 11 tables; accepted by Ap

    The first magnetic maps of a pre-main sequence binary star system - HD 155555

    Get PDF
    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between the 2004 and 2007 epochs. This is accompanied by an apparent shift in the location of magnetic energy from the azimuthal to radial field. We suggest that this could be indicative of a magnetic activity cycle. We use the radial magnetic maps to extrapolate the coronal field (by assuming a potential field) for each star individually - at present ignoring any possible interaction. The secondary star is found to exhibit an extreme tilt (~75 deg) of its large scale magnetic field to that of its rotation axis for both epochs. The field complexity that is apparent in the surface maps persists out to a significant fraction of the binary separation. Any interaction between the fields of the two stars is therefore likely to be complex also. Modelling this would require a full binary field extrapolation.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    A retrospective of the GREGOR solar telescope in scientific literature

    Full text link
    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the "historical" context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of Denker et al. 2012, Astron. Nachr. 333, 81

    Magnetic inflation and Stellar Mass. II. On the radii of wingle, rapidly rotating, fully convective M-dwarf stars

    Get PDF
    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their Rsin⁡iR\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (vsin⁡iv\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 \% \mbox{--}15{ \% }_{-2.5}^{+3}, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.The authors would like to thank the referee for the thoughtful report, which greatly improved the manuscript. The authors would also like to thank Lisa Prato and Larissa Nofi for IGRINS training, and Heidi Larson, Jason Sanborn, and Andrew Hayslip for operating the DCT during our observations. We would also like to thank Jen Winters, Jonathan Irwin, Paul Dalba, Mark Veyette, Eunkyu Han, and Andrew Vanderburg for useful discussions and helpful comments on this work. Some of this work was supported by the NASA Exoplanet Research Program (XRP) under grant No. NNX15AG08G issued through the Science Mission Directorate.These results made use of the Lowell Observatory's Discovery Channel Telescope, supported by Discovery Communications, Inc., Boston University, the University of Maryland, the University of Toledo and Northern Arizona University; the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI; data taken at The McDonald Observatory of The University of Texas at Austin; and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. (NNX15AG08G - NASA Exoplanet Research Program (XRP); Discovery Communications, Inc.; Boston University; University of Maryland; University of Toledo; Northern Arizona University; AST-1229522 - US National Science Foundation; University of Texas at Austin; Korean GMT Project of KASI; NASA; NSF
    • 

    corecore