83 research outputs found

    The Rotation Period Distribution in the Young Open Cluster NGC 6709

    Full text link
    Open clusters serve as a useful tool for calibrating models of the relationship between mass, rotation, and age for stars with an outer convection zone due to the homogeneity of the stars within the cluster. Cluster to cluster comparisons are essential to determine whether the universality of spin down relations holds. NGC 6709 is selected as a young open cluster for which no rotation periods of members have previously been obtained. This cluster is at a distance of over 1 kpc and has two red giant members. Isochrones place the age of the cluster at around 150 Myr, or approximately the same age as the Pleiades. Photometry is obtained over a multi-month observing season at the robotic observatory STELLA. After basic processing, PSF photometry was derived using Daophot II, and a suite of related software allowed us to create time series of relative magnitude changes for each star. Four time series analysis methods are then applied to these light curves to obtain rotation periods for members stars. We obtain for the first time rotation periods for 45 FGK cluster members of NGC 6709. We compare our rotation periods to Gaia EDR3 colors and find a slow-rotating sequence with increasing rotation periods towards redder stars and a smaller clump of rapid rotators that have not yet joined this sequence. NGC 6709 has rotation periods very similar to that of another Pleiades-age open cluster, NGC 2516.Comment: 18 pages, 14 figures, 5 table

    Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR

    Get PDF
    The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.Comment: 13 pages, 6 figures, Accepted for publication in A&

    Correcting for chromatic stellar activity effects in transits with multiband photometric monitoring: Application to WASP-52

    Full text link
    The properties of inhomogeneities on the surface of active stars (i.e. dark spots and bright faculae) significantly influence the determination of the parameters of an exoplanet. The chromatic effect they have on transmission spectroscopy could affect the analysis of data from future space missions such as JWST and Ariel. To quantify and mitigate the effects of those surface phenomena, we developed a modelling approach to derive the surface distribution and properties of active regions by modelling simultaneous multi-wavelength time-series observables. By using the StarSim code, now featuring the capability to solve the inverse problem, we analysed \sim 600 days of BVRI multiband photometry from TJO and STELLA telescopes exoplanet host star WASP-52. From the results, we simulated the chromatic contribution of surface phenomena on the observables of its transits. We are able to determine the relevant activity parameters of WASP-52 and reconstruct the time-evolving longitudinal map of active regions. The star shows a heterogeneous surface composed of dark spots with a mean temperature contrast of 575±150575\pm150 K with filling factors ranging from 3 to 14 %. We studied the chromatic effects on the depths of transits obtained at different epochs with different stellar spot distributions. For WASP-52, with peak-to-peak photometric variations of \sim7 % in the visible, the residual effects of dark spots on the measured transit depth, after applying the calculated corrections, are about 10410^{-4} at 550 nm and 3×1053\times10^{-5} at 6μ\mum. We demonstrate that by using contemporaneous ground-based multiband photometry of an active star, it is possible to reconstruct the parameters and distribution of active regions over time, and thus, quantify the chromatic effects on the planetary radii measured with transit spectroscopy and mitigate them by about an order of magnitude.Comment: 17 pages, 12 figure

    Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae

    Get PDF
    Context. Double-lined eclipsing binaries allow the direct determination of masses and radii, which are key for testing stellar models. With the launch of the TESS mission, many well-known eclipsing binaries have been observed at higher photometric precision, permitting the improvement of the absolute dimension determinations. Aims. Using TESS data and newly obtained spectroscopic observations, we aim to determine the masses and radii of the eccentric eclipsing binary systems V889 Aql and V402 Lac, together with their apsidal motion parameters. Methods. We simultaneously modelled radial velocity curves and times of eclipse for each target to precisely determine the orbital parameters of the systems, which we used to analyse the light curves and then obtain their absolute dimensions. We compared the obtained values with those predicted by theoretical models. Results. We determined masses and radii of the components of both systems with relative uncertainties lower than 2%. V889 Aql is composed of two stars with masses 2:17±0:02 M⊙ and 2:13±0:01 M⊙ and radii 1:87±0:04 R⊙ and 1:85±0:04 R⊙.We find conclusive evidence of the presence of a third body orbiting V889 Aql with a period of 67 yr. Based on the detected third light and the absence of signal in the spectra, we suggest that this third body could in turn be a binary composed of two ±1.4 M⊙ stars. V402 Lac is composed of two stars with masses 2:80 ± 0:05 M⊙ and 2:78 ± 0:05 M⊙ and radii 2:38 ± 0:03 R⊙ and 2:36 ± 0:03 R⊙. The times of minimum light are compatible with the presence of a third body for this system too, although its period is not yet fully sampled. In both cases we have found a good agreement between the observed apsidal motion rates and the model predictions

    GJ1214: Rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum

    Full text link
    Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. The measured variability shows a periodicity of 125 +- 5 days, which we interpret as the signature of the stellar rotation period. This value overrules previous suggestions of a significantly shorter stellar rotation period. A light curve inversion of the monitoring data yields an estimation of the flux dimming of a permanent spot filling factor not contributing to the photometric variability, a temperature contrast of the spots of about 370 K and persistent active longitudes. The derived surface maps over all five seasons were used to estimate the influence of the star spots on the transmission spectrum of the planet from 400 nm to 2000 nm. The monitoring data presented here do not support a recent interpretation of a measured transmission spectrum of GJ 1214b as to be caused by bright regions in the stellar photosphere. Instead, we list arguments as to why the effect of dark spots likely dominated over bright regions in the period of our monitoring. Furthermore, our photometry proves an increase in variability over at least four years, indicative for a cyclic activity behavior. The age of GJ 1214 is likely between 6 and 10 Gyr. The long-term photometry allows for a correction of unocculted spots. For an active star such as GJ 1214, there remains a degeneracy between occulted spots and the transit parameters used to build the transmission spectrum. This degeneracy can only be broken by high-precision transit photometry resolving the spot crossing signature in the transit light curve.Comment: 11 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    Get PDF
    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced between poloidal and toroidal components. However we find tentative evidence of a change in the poloidal/toroidal ratio in 2009 with the poloidal component becoming more dominant. At all epochs the radial magnetic field is predominantly non-axisymmetric while the azimuthal field is predominantly axisymmetric with a ring of positive azimuthal field around the pole similar to that seen on other active stars.Comment: 18 pages, 17 figures, accepted by MNRA

    X-rays in the Orion Nebula Cluster: Constraints on the origins of magnetic activity in pre-main sequence stars

    Get PDF
    A recent Chandra/ACIS observation of the Orion Nebula Cluster detected 1075 sources (Feigelson et al. 2002), providing a uniquely large and well-defined sample to study the dependence of magnetic activity on bulk properties for stars descending the Hayashi tracks. The following results are obtained: (1) X-ray luminosities L_t in the 0.5-8 keV band are strongly correlated with bolometric luminosity with = -3.8 for stars with masses 0.7<M<2 Mo, an order of magnitude below the main sequence saturation level; (2) the X-ray emission drops rapidly below this level in some or all stars with 2<M<3 Mo; (3) the presence or absence of infrared circumstellar disks has no apparent relation to X-ray levels; and (4) X-ray luminosities exhibit a slight rise as rotational periods increase from 0.4 to 20 days. This last finding stands in dramatic contrast to the strong anticorrelation between X-rays and period seen in main sequence stars. The absence of a strong X-ray/rotation relationship in PMS stars, and particularly the high X-ray values seen in some very slowly rotating stars, is a clear indication that the mechanisms of magnetic field generation differ from those operating in main sequence stars. The most promising possibility is a turbulent dynamo distributed throughout the deep convection zone, but other models such as alpha-Omega dynamo with `supersaturation' or relic core fields are not immediately excluded. The drop in magnetic activity in intermediate-mass stars may reflect the presence of a significant radiative core. The evidence does not support X-ray production in large-scale star-disk magnetic fields.Comment: 51 pages, 8 figures. To appear in the Astrophysical Journa

    Broad-band spectrophotometry of HAT-P-32 b: search for a scattering signature in the planetary spectrum

    Get PDF
    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the Sloan u′ band to the Sloan z′ band. Our results rule out cloud-free planetary atmosphere models of solar metallicity. Furthermore, a discrepancy at reddest wavelengths to previously published results makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes
    corecore