494 research outputs found
Preliminary analysis of the ICRF launcher for DTT
The paper reports the preliminary analysis of different typologies of ICRH launchers for chosing the most efficient solution for the ICRH system of the Divertor Tokamak Test facility (DTT), designed by the Italian DTT Limited Liability Consortium (S.C. a r.l.). In its final configuration this system will couple to the DTT plasma a nominal power of 6 MW in the 60 – 90 MHz frequency range by means of four launchers. This very preliminary analysis has been done with the ANSYS HFSS code
Retroviral gene transfer, rapid selection, and maintenance of the immature phenotype in mouse dendritic cells
We used the retroviral vector PINCO [which expresses the green fluorescent protein (GFP) as a selectable marker], to infect growth factor-dependent immature D1 dendritic cells (DC). The efficiency of infection in different experiments was between 5 and 30%, but subsequent cell sorting led to a virtually homogeneous population of GFP-positive cells. Retroviral infection did not modify the immature DC phenotype, as shown by the low expression of major histocompatibility complex and co-stimulatory molecules. Furthermore, the GFP-positive D1 cells underwent full maturation after lipopolysaccharide treatment, as indicated by a high expression of cell-surface MHC and co-stimulatory molecules, and also by strong stimulatory activity in allogeneic mixed lymphocyte reaction. The high efficiency of this retroviral system, the rapidity of the technique, and the possibility to overcome in vitro selection make this method very attractive for the stable introduction of heterologous genes into proliferating immature mouse D1 cells. Furthermore, this approach is suitable for functional studies of new DC-specific genes involved in DC maturation and survival
Integration concept of an Electron Cyclotron System in DEMO
The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in upper oblique ports are dedicated to NTM control and one equatorial EC port for heating and current drive (H&CD) purposes as basic configuration. Rather than upper oblique ports, DEMO has upper vertical ports to allow the vertical removal of the large breeding blanket segments. While ITER is using front steering antennas for NTM control, in DEMO the antennas are recessed behind the breeding blanket and called mid-steering antennas, referred to the radially recessed position to the breeding blanket. In the DEMO pre-conceptual design phase two variants are studied to integrate the ECS in equatorial ports. The first option integrates waveguide bundles at four vertical levels inside EC port plugs with antennas with fixed and movable mid-steering mirrors that are powered by gyrotrons, operating at minimum two different multiples of the fundamental resonance frequency of the microwave output window. Alternatively, the second option integrates fixed antenna launchers connected to frequency step-tunable gyrotrons. The first variant is described in this paper, introducing the design and functional requirements, presenting the equatorial port allocation, the port plug design including its maintenance concept, the basic port cell layout, the transmission line system with diamond windows from the tokamak up to the RF building and the gyrotron sources. The ECS design studies are supported by neutronic and tokamak integration studies, quasi-optical and plasma physics studies, which will be summarized. Physics and technological gaps will be discussed and an outlook to future work will be given
Integration Concept of an Electron Cyclotron System in DEMO
The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in upper oblique ports are dedicated to NTM control and one equatorial EC port for heating and current drive (H&CD) purposes as basic configuration. Rather than upper oblique ports, DEMO has upper vertical ports to allow the vertical removal of the large breeding blanket segments. While ITER is using front steering antennas for NTM control, in DEMO the antennas are recessed behind the breeding blanket and called mid-steering antennas, referred to the radially recessed position to the breeding blanket.In the DEMO pre-conceptual design phase two variants are studied to integrate the ECS in equatorial ports. The first option integrates waveguide bundles at four vertical levels inside EC port plugs with antennas with fixed and movable mid-steering mirrors that are powered by gyrotrons, operating at minimum two different multiples of the fundamental resonance frequency of the microwave output window. Alternatively, the second option integrates fixed antenna launchers connected to frequency step-tunable gyrotrons. The first variant is described in this paper, introducing the design and functional requirements, presenting the equatorial port allocation, the port plug design including its maintenance concept, the basic port cell layout, the transmission line system with diamond windows from the tokamak up to the RF building and the gyrotron sources.The ECS design studies are supported by neutronic and tokamak integration studies, quasi-optical and plasma physics studies, which will be summarized. Physics and technological gaps will be discussed and an outlook to future work will be given
The ICRF antenna of DTT: Design status and perspectives
The basis of design for the Ion Cyclotron Range of Frequency (ICRF) antennas of the Divertor Tokamak Test facility (DTT) is defined and the most suitable design solutions abiding by such requirements are shown. DTT will be equipped with one, two or three ICRF modules – the final choice to be taken during the first years of operations – and each module will have two antennas. Each antenna has to reliably couple a radiofrequency (RF) power ≥1.5 MW in the range 60÷90 MHz to the single-null, 6 T, 5.5 MA, DTT scenario and allow for remote (dis)assembling and maintenance operations of its plasma-facing components. Most documented antenna concepts are considered and a large set of alternatives, based on toroidal arrays of two, three or four straps with different shapes and constraints, is quantitatively assessed in terms of RF performances. Two most promising candidates are identified: the one, selected to access a detailed design phase, relies on traditional radiating elements, the other is an innovative concept requiring some R&D
Observations of Binary Stars with the Differential Speckle Survey Instrument. IX. Observations of Known and Suspected Binaries, and a Partial Survey of Be Stars
We report 370 measures of 170 components of binary and multiple star systems,
obtained from speckle imaging observations made with the Differential Speckle
Survey Instrument at Lowell Observatory's Discovery Channel Telescope in 2015
through 2017. Of the systems studied, 147 are binary stars, 10 are seen as
triple systems, and 1 quadruple system is measured. Seventy-six high-quality
non-detections and fifteen newly resolved components are presented in our
observations. The uncertainty in relative astrometry appears to be similar to
our previous work at Lowell, namely linear measurement uncertainties of
approximately 2 mas, and the relative photometry appears to be uncertain at the
0.1 to 0.15 magnitude level. Using these measures and those in the literature,
we calculate six new visual orbits, including one for the Be star 66 Oph, and
two combined spectroscopic-visual orbits. The latter two orbits, which are for
HD 22451 (YSC 127) and HD 185501 (YSC 135), yield individual masses of the
components at the level of 2 percent or better, and independent distance
measures that in one case agrees with the value found in the Gaia DR2, and in
the other disagrees at the 2- level. We find that HD 22451 consists of
an F6V+F7V pair with orbital period of days and masses of
and . For HD 185501, both stars
are G5 dwarfs that orbit one another with a period of days,
and the masses are and . We
discuss the details of both the new discoveries and the orbit objects
The Genopolis Microarray Database
<p>Abstract</p> <p>Background</p> <p>Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood.</p> <p>Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions.</p> <p>Results</p> <p>The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip<sup>® </sup>platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users.</p> <p>Conclusion</p> <p>The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local database and a public repository, where the development of a common coherent annotation is important. In its current implementation, it provides a uniform coherently annotated dataset on dendritic cells and macrophage differentiation.</p
Current drive at plasma densities required for thermonuclear reactors
Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors
- …