140 research outputs found

    Behavioral Sequence Analysis Reveals a Novel Role for ß2* Nicotinic Receptors in Exploration

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and modulate neuronal function in most mammalian brain structures. The contribution of defined nAChR subunits to a specific behavior is thus difficult to assess. Mice deleted for ß2-containing nAChRs (ß2−/−) have been shown to be hyperactive in an open-field paradigm, without determining the origin of this hyperactivity. We here develop a quantitative description of mouse behavior in the open field based upon first order Markov and variable length Markov chain analysis focusing on the time-organized sequence that behaviors are composed of. This description reveals that this hyperactivity is the consequence of the absence of specific inactive states or “stops”. These stops are associated with a scanning of the environment in wild-type mice (WT), and they affect the way that animals organize their sequence of behaviors when compared with stops without scanning. They characterize a specific “decision moment” that is reduced in ß2−/− mutant mice, suggesting an important role of ß2-nAChRs in the strategy used by animals to explore an environment and collect information in order to organize their behavior. This integrated analysis of the displacement of an animal in a simple environment offers new insights, specifically into the contribution of nAChRs to higher brain functions and more generally into the principles that organize sequences of behaviors in animals

    Adult Male Mice Emit Context-Specific Ultrasonic Vocalizations That Are Modulated by Prior Isolation or Group Rearing Environment

    Get PDF
    Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals

    Novel Strains of Mice Deficient for the Vesicular Acetylcholine Transporter: Insights on Transcriptional Regulation and Control of Locomotor Behavior

    Get PDF
    Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to “turn down” neuronal circuits controlling locomotion

    Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task

    Get PDF
    RATIONALE: Nicotinic receptors have been implicated in attentional performance. Nicotine can improve attention in animals and humans, but knowledge about relevant receptor subtypes is very limited. OBJECTIVES: The aim was to examine the role of α7 receptors in attentional performance of mice and in effects of nicotine. MATERIALS AND METHODS: Mice with targeted deletion of the gene coding for the α7 subunit of nicotinic receptors and wild-type controls were trained on a five-choice serial reaction time task with food reinforcers presented under varying parametric conditions. Nicotine was administered in a range of doses (0.001–1.0 mg/kg sc), including those reported to enhance attentional performance. RESULTS: Initially the α7(−/−) (knockout) mice responded less accurately and made more anticipatory responses. After task parameters were altered so that the time allowed for responding was reduced and anticipatory (impulsive) responses were punished by a time-out, the pattern of performance deficits changed; there were increased omission errors in α7(−/−) mice but normal levels of accuracy and anticipatory responding. Nicotine did not improve any measure of performance, either with the original training parameters or after retraining; the largest dose used (1.0 mg/kg) produced a general impairment of responding in α7(−/−) and wild-type mice. CONCLUSIONS: α7 nicotinic receptor knockout mice are impaired in performance of the 5-CSRTT, suggesting a possible role for α7 receptors in attentional processing. However, identification of a protocol for assessing attention-enhancing effects of nicotine in mice may require further modifications of test procedures or the use of different strains of animal

    Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory

    Get PDF
    RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory

    Forebrain NR2B Overexpression Facilitating the Prefrontal Cortex Long-Term Potentiation and Enhancing Working Memory Function in Mice

    Get PDF
    Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory

    Dopaminergic modulation of appetitive trace conditioning: the role of D1 receptors in medial prefrontal cortex

    Get PDF
    Rationale: Trace conditioning may provide a behavioural model suitable to examine the maintenance of ‘on line’ information and its underlying neural substrates. Objectives: Experiment la was run to establish trace conditioning in a shortened procedure which would be suitable to test the effects of dopamine (DA) D1 receptor agents administered by microinjection directly into the brain. Experiment lb examined the effects of the DA D1 agonist SKF81297 and the DA D1 antagonist SCH23390 following systemic administration in pre-trained animals. Experiment 2 went on to test the effects of systemically administered SKF81297 on the acquisition of trace conditioning. In experiment 3, SKF81297 was administered directly in prelimbic (PL) and infralimbic (IL) sub-regions of medial prefrontal cortex (mPFC) to compare the role of different mPFC sub-regions. Results: Whilst treatment with SCH23390 impaired motor responding and/or motivation, SKF81297 had relatively little effect in the pre-trained animals tested in experiment 1b. However, systemic SKF81297 depressed the acquisition function at the 2-s trace interval in experiment 2. Similarly, in experiment 3, SKF81297 (0.1 μg in 1.0 μl) microinjected into either PL or IL mPFC impaired appetitive conditioning at the 2-s trace interval. Conclusions: Impaired trace conditioning under SKF81297 is likely to be mediated in part (but not exclusively) within the IL and PL mPFC sub-regions. The finding that trace conditioning was impaired rather than enhanced under SKF81297 provides further evidence for the inverse U-function which has been suggested to be characteristic of mPFC DA function
    corecore