152 research outputs found

    An infant mouse model of brain damage in pneumococcal meningitis

    Get PDF
    Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n=299), CD1 (n=42) and BALB/c (n=14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningiti

    Strategies to prevent neuronal damage in paediatric bacterial meningitis

    Get PDF
    PURPOSE OF REVIEW: The mortality of bacterial meningitis can reach 30%, and up to 50% of survivors suffer from persisting neurological deficits as a consequence of the disease. The incidence of neurological sequelae of bacterial meningitis has not improved over the last decade. Adjunctive therapeutic options are limited, and ongoing research into the pathophysiology of brain damage in bacterial meningitis aims at providing the scientific basis for future development of more efficient adjunctive options. RECENT FINDINGS: In a population with good access to health care, dexamethasone given before or at the time of initiation of antibiotic therapy acts beneficially in paediatric pneumococcal meningitis, but not in meningococcal meningitis. In experimental animal models, brain-derived neurotrophic factor protected against brain injury and improved hearing while melatonin, which has antioxidant properties among other effects, reduced neuronal death. Transgene technology can be used to provide new insights into the pathophysiology of the disease and to identify potential therapeutic targets. SUMMARY: Although dexamethasone improves outcome of bacterial meningitis under defined circumstances, the morbidity of bacterial meningitis still remains unacceptably high. Experimental models may help to identify new therapeutic strategies to further improve the neurological outcome in young children suffering from bacterial meningitis

    Phage Lytic Enzyme Cpl-1 for Antibacterial Therapy in Experimental Pneumococcal Meningitis

    Get PDF
    Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningiti

    Tick-borne encephalitis affects sleep-wake behavior and locomotion in infant rats.

    Get PDF
    BACKGROUND/AIMS Tick-borne encephalitis (TBE) is a disease affecting the central nervous system. Over the last decade, the incidence of TBE has steadily increased in Europe and Asia despite the availably of effective vaccines. Up to 50% of patients after TBE suffer from post-encephalitic syndrome that may develop into long-lasting morbidity. Altered sleep-wake functions have been reported by patients after TBE. The mechanisms causing these disorders in TBE are largely unknown to date. As a first step toward a better understanding of the pathology of TBEV-inducing sleep dysfunctions, we assessed parameters of sleep structure in an established infant rat model of TBE. METHODS 13-day old Wistar rats were infected with 1 × 106 FFU Langat virus (LGTV). On day 4, 9, and 21 post infection, Rotarod (balance and motor coordination) and open field tests (general locomotor activity) were performed and brains from representative animals were collected in each subgroup. On day 28 the animals were implanted with a telemetric EEG/EMG system. Sleep recording was continuously performed for 24 consecutive hours starting at day 38 post infection and visually scored for Wake, NREM, and REM in 4 s epochs. RESULTS As a novelty of this study, infected animals showed a significant larger percentage of time spend awake during the dark phase and less NREM and REM compared to the control animals (p < 0.01 for all comparisons). Furthermore, it was seen, that during the dark phase the wake bout length in infected animals was prolonged (p = 0.043) and the fragmentation index decreased (p = 0.0085) in comparison to the control animals. LGTV-infected animals additionally showed a reduced rotarod performance ability at day 4 (p = 0.0011) and day 9 (p = 0.0055) and day 21 (p = 0.0037). A lower locomotor activity was also seen at day 4 (p = 0.0196) and day 9 (p = 0.0473). CONCLUSION Our data show that experimental TBE in infant rats affects sleep-wake behavior, leads to decreased spontaneous locomotor activity, and impaired moto-coordinative function

    Embryonic Stem Cell-Derived Neurons Grown on Multi-Electrode Arrays as a Novel In vitro Bioassay for the Detection of Clostridium botulinum Neurotoxins

    Get PDF
    Clostridium botulinum neurotoxins (BoNTs) are the most poisonous naturally occurring protein toxins known to mankind and are the causative agents of the severe and potentially life-threatening disease botulism. They are also known for their application as cosmetics and as unique bio-pharmaceuticals to treat an increasing number of neurological and non-neurological disorders. Currently, the potency of biologically active BoNT for therapeutic use is mainly monitored by the murine LD50-assay, an ethically disputable test causing suffering and death of a considerable number of mice. The aim of this study was to establish an in-vitro assay as an alternative to the widely used in-vivo mouse bioassay. We report a novel BoNT detection assay using mouse embryonic stem cell-derived neurons (mESN) cultured on multi-electrode arrays. After 21 days in culture, the mESN formed a neuronal network showing spontaneous bursting activity based on functional synapses and express the necessary target proteins for BoNTs. Treating cultures for 6 h with 16.6 pM of BoNT serotype A and incubation with 1.66 pM BoNT/A or 33 Units/ml of Botox¼ for 24 h lead to a significant reduction of both spontaneous network bursts and average spike rate. This data suggests that mESN cultured on multi-electrode arrays pose a novel, biologically relevant model that can be used to detect and quantify functional BoNT effects, thus accelerating BoNT research while decreasing animal use

    Clinical Streptococcus pneumoniae isolates induce differing CXCL8 responses from human nasopharyngeal epithelial cells which are reduced by liposomes

    Get PDF
    BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases

    The CCR5 antagonist maraviroc exerts limited neuroprotection without improving neurofunctional outcome in experimental pneumococcal meningitis.

    Get PDF
    One-third of pneumococcal meningitis (PM) survivors suffer from neurological sequelae including learning disabilities and hearing loss due to excessive neuroinflammation. There is a lack of efficacious compounds for adjuvant therapy to control this long-term consequence of PM. One hallmark is the recruitment of leukocytes to the brain to combat the bacterial spread. However, this process induces excessive inflammation, causing neuronal injury. Maraviroc (MVC)-a CCR5 antagonist-was demonstrated to inhibit leukocyte recruitment and attenuate neuroinflammation in several inflammatory diseases. Here, we show that in vitro, MVC decreased nitric oxide production in astroglial cells upon pneumococcal stimulation. In vivo, infant Wistar rats were infected with 1 × 104 CFU/ml S. pneumoniae and randomized for treatment with ceftriaxone plus MVC (100 mg/kg) or ceftriaxone monotherapy. During the acute phase, neuroinflammation in the CSF was measured and histopathological analyses were performed to determine neuronal injury. Long-term neurofunctional outcome (learning/memory and hearing capacity) after PM was assessed. MVC treatment reduced hippocampal cell apoptosis but did not affect CSF neuroinflammation and the neurofunctional outcome after PM. We conclude that MVC treatment only exerted limited effect on the pathophysiology of PM and is, therefore, not sufficiently beneficial in this experimental paradigm of PM

    Identification of side effects of COVID-19 drug candidates on embryogenesis using an integrated zebrafish screening platform

    Get PDF
    Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.This work was funded by the Swiss National Science Foundation NRP78 4078P0_198297 to Nadia Mercader and Grant 310030_189136 to Stephen Leib.S

    Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis

    Get PDF
    Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningitis

    Is Penicillin Plus Gentamicin Synergistic Against Sessile Group B Streptococcal Isolates? An In Vivo Study With An Experimental Model Of Foreign-body Infection

    Get PDF
    The rate of invasive group B Streptococcus (GBS) infections is steadily increasing, particularly in older persons and in adults with diabetes and other comorbidities. This population includes persons with a foreign body (e.g., who have undergone arthroplasty). In a rat tissue cage model, we evaluated the efficacy of adjunctive gentamicin (GEN) administered systemically (5 mg/kg body weight) every 24 h, or locally (12.5 mg/L tissue cage concentration) every 24 or 72 h, in combination with penicillin (PEN) administered systemically (250,000 IU/kg body weight three times per day). The efficacy was evaluated on two different sessile forms of GBS: transition (i.e., in between planktonic and biofilm) and biofilm. After 3 days of treatment, the mean bacterial load reduction of transition-form GBS was greater in all PEN-GEN combination groups than in the PEN monotherapy group (P <= 0.03). The 6-day regimen decreased the bacterial load significantly in comparison to the 3-day regimen, irrespective of growth form and adjunctive GEN (P < 0.01). After 6 days of treatment, the mean reduction in transition-form GBS was greater with PEN plus GEN administered locally every 24 h than with PEN monotherapy (P = 0.03). These results were not confirmed with biofilm GBS. The difference in mean bacterial load reduction between all PEN-GEN and PEN monotherapy groups was <100 CFU/mL. Hence, synergy criteria were not fulfilled. Adjunctive systemic GEN consists of potential side effects and showed poor efficacy in this study. Combining systemic PEN and local GEN has a potential application in the treatment of streptococcal implant-associated infections
    • 

    corecore