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Strategies to prevent neuronal damage in pediatric bacterial
meningitis
Denis Grandgirard and Stephen L. Leib

Purpose of review

The mortality of bacterial meningitis can reach 30%, and

up to 50% of survivors suffer from persisting neurological

deficits as a consequence of the disease. The incidence

of neurological sequelae of bacterial meningitis has not

improved over the last decade. Adjunctive therapeutic

options are limited, and ongoing research into the

pathophysiology of brain damage in bacterial meningitis

aims at providing the scientific basis for future

development of more efficient adjunctive options.

Recent findings

In a population with good access to health care,

dexamethasone given before or at the time of initiation of

antibiotic therapy acts beneficially in pediatric

pneumococcal meningitis, but not in meningococcal

meningitis. In experimental animal models, brain-derived

neurotrophic factor protected against brain injury and

improved hearing while melatonin, which has antioxidant

properties among other effects, reduced neuronal death.

Transgene technology can be used to provide new

insights into the pathophysiology of the disease and to

identify potential therapeutic targets.

Summary

Although dexamethasone improves outcome of bacterial

meningitis under defined circumstances, the morbidity of

bacterial meningitis still remains unacceptably high.

Experimental models may help to identify new therapeutic

strategies to further improve the neurological outcome in

young children suffering from bacterial meningitis.
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Introduction

Bacterial meningitis, and in particular meningitis of chil-

dren, is associated with devastating mortality rates of up

to 30%. Moreover, 20–50 % of pediatric patients who

survive the infection have serious and permanent neu-

rological sequelae, which include deafness, mental retar-

dation and learning impairment, sensory-motor deficits,

seizure disorders and cerebral palsy. The incidence of

neurologic sequelae of bacterial meningitis in children

has not significantly improved over the last decade [1].

For example, comparison of two timely distinct national

prospective studies performed in England and Wales

showed a decrease in the acute phase mortality from

22% in the time period from 1985 to 1987 to 6.6% in

the time period from 1996 to 1997. In contrast, the cor-

responding follow-up studies on the incidence of serious

disabilities in the surviving patients showed an inci-

dence of 25.5% in the time period from 1985 to 1987

and an incidence of 23.5% in the time period from

1996 to 1997. Compared with general practice or hospi-

tal control patients, children that survived bacterial

meningitis had a fourfold to 16-fold increase in the risk

of developing severe disabilities [2•]. Even 12 years

after the disease, survivors of meningitis are at greater

risk of deficits in intellectual, academic and executive

ability than grade-matched and gender-matched con-

trols. As a consequence, children after meningitis are

more than twice as likely as controls to require special

educational assistance (27.0% compared with 12.5%). A

younger age at illness is associated with a poorer effi-

ciency in performing linguistic and executive functions,

and may suggest that cerebral insult may have a greater

impact on a developing brain [3•]. Group B streptococ-

cus (GBS) is the most common etiological agent in neo-

nates and Streptococcus pneumoniae and Neisseria meningi-
tidis are the most common causes of bacterial meningitis

in infants and young children worldwide [4••]. Pneumo-

coccal meningitis is consistently associated with a parti-

cularly high incidence of neurological sequelae, with up

to half of the survivors presenting some form of neuro-

logical deficits [5,6]. A retrospective study of 49 patients

admitted in a single pediatric intensive care unit

between 1990 and 2002 in France and diagnosed with

pneumococcal meningitis recorded a mortality rate of

49% and neurological impairment in 48% of patients dis-

charged from the hospital with a mean follow-up of 5

years (range 1–12 years) [7•].
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Brain injury caused by bacterial meningitis prominently

affects three brain structures, namely the cortex, the

hippocampus and the inner ear. As shown in pathologic

studies in patients dying from bacterial meningitis and

in corresponding animal models, the cortical regions of

the brain display areas of acute neuronal injury asso-

ciated with areas of focal ischemic necrosis [8]. In the

hippocampus, apoptotic damage occurs in the inner

blade of the dentate gyrus and this damage has been

associated with impairment of learning and memory in

experimental models of pneumococcal meningitis [9,10].

The vulnerable cells in the dentate gyrus have been

identified to include immature neurons recently gener-

ated from stem cells [11]. Necrotic cell death is also

observed in the CA1–CA4 sectors of the hippocampus,

and in the dentate gyrus, particularly in adult mice,

when the damage is severe [12]. A different form of hip-

pocampal damage characterized by clusters of shrunken

and pyknotic nuclei affects cells spanning the entire

blade of the dentate gyrus in newborn rats infected

with GBS [11].

Hearing impairment is the most common neurological

sequel following meningitis and is observed in up to

30% of patients, depending on the infecting pathogen

[13–15]. In an adult rat model of pneumococcal menin-

gitis the severity of permanent hearing impairment

assessed two weeks after the infection correlated signif-

icantly with the loss of type I spiral ganglion neurons

[16]. Thus neuronal loss in the spinal ganglion repre-

sents a histomorphological correlate of hearing impair-

ment.

In the time period covered in this review (11/2004 to

9/2005), a number of pathogenetic factors have been

evaluated for their contribution to the development of

brain damage in bacterial meningitis. Matrix-metallopro-

teinases (MMP) have been shown to facilitate the extra-

vasation of white blood cells (WBCs) and to participate

in blood–brain barrier disruption by degrading compo-

nents of the basal lamina of the cerebral vasculature

[17•]. The presence of reactive oxygen species and reac-

tive nitrogen species leads to the production of peroxi-

nitrite and the occurrence of lipid peroxidation, as

observed in inflammatory cells and penetrating cortical

blood vessels in brain specimens from patients [18]. In

addition, oxidants have been shown to induce DNA

strand breakage and subsequent poly(ADP ribose) poly-

merase activation, initiating an energy-consuming intra-

cellular cycle that ultimately leads to cellular energy

depletion and death, specifically in endothelial cells of

the cerebral vasculature [19]. Finally, sustained cytokine

production, especially IL-1β, has been shown to corre-

late with adverse disease outcome and/or severity of dis-

ease [20].

Factors found to contribute to ischemic injury include

the production of vasoconstrictive endothelins, the acti-

vation of platelets and the induction of a procoagulant

state [21].

Different bacterial toxins have been shown to directly

trigger the host apoptotic machinery: S. pneumoniae-
produced pneumolysin and hydrogen peroxide have

been shown to exert neurotoxicity in vitro and in an

experimental model of pneumococcal meningitis [22].

Hemolysin may play a role during GBS meningitis,

since it has been shown to induce apoptosis [23].

Strategies for preventing neuronal damage
during bacterial meningitis: current concepts

In the time period covered by this review (11/2004 to

9/2005) the pathogenetic mechanisms identified as tar-

gets for adjuvant therapy include the following:

(1) bacterial killing and the prevention of associated

release of bacterial components [24••,25,26•,27•];

(2) the host mechanisms for recognition of bacteria or

bacterial components and the initiation of the

inflammatory reaction [28•,29•,30,31•,32•,33•,34•,35];

(3) the modulation of the inflammatory reaction by

adjuvant therapy with dexamethasone [4••,7•,36••,

37,38•,39•,40•];

(4) the inhibition of inflammatory and/or neurotoxic

mediators [41,42•,43•,44,45•,46••];

(5) the modulation of apoptotic pathways [47,48•,49•,

50•].

Bacterial killing and the prevention of associated

release of bacterial components

Bacteria and their components engage the innate

immune response through activation of the members

of Toll-like receptors (TLRs), including TLR2 and

TLR4. Antibiotic therapy reduces the overall release

of these components, when compared to unhindered

replication and subsequent autolysis. Bacteriolytic anti-

biotics, however, have been shown to induce an initial

brisk release of bacterial components that may accentu-

ate inflammation. The use of antibiotics that inhibit

RNA/protein synthesis or DNA replication (rifamycins,

macrolides, clindamycin, ketolides and quinolones)

reduces bacterial lysis [24••]. For example, the produc-

tion of inflammatory mediators by murine macrophages

is decreased when stimulated by GBS exposed to rifam-

pin or clindamycin compared with ampicillin or cefotax-

ime [25]. Rifampicin, given 6 hours prior to ceftriaxone,

reduced the release of bacterial components into the

cerebrospinal fluid (CSF) and attenuated neuronal

injury in the hippocampus [51]. Similarly, clindamycin

lowered extracellular concentration of hydroxyl radicals
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and glutamate, and decreased neuronal apoptosis in the

dentate gyrus in a rabbit model of pneumococcal menin-

gitis [26•]. The cyclic lipopeptide daptomycin kills bac-

teria by inducing a rapid depolarization of the bacterial

membrane without subsequent disruption and has been

suggested as a candidate for the treatment of gram-posi-

tive bacterial meningitis [27•].

Recognition of bacterial components and the initiation

of the inflammatory reaction

The brain’s inflammatory response to bacterial infection

determines the outcome of bacterial meningitis, that is,

the extent of brain injury as a consequence of the dis-

ease. Thus, adjuvant therapeutic strategies include tar-

geting the inflammatory reaction as early and as

upstream as possible. Early events in the inflammatory

cascade are the recognition of the pathogens, the result-

ing immune activation, the recruitment of WBCs in the

CSF and the release of inflammatory mediators into the

subarachnoid space. Therapeutic strategies developed

with this aim strive to leave the beneficial components

of inflammation in place, but to attenuate the harmful

ones (reviewed in [23]).

Recent data generated in experimental models concern

the recognition of the pathogen and the initiation of the

immune reaction. CD14 myeloid receptor, TLRs and

MyD88 have all been implicated in immune activation.

CD14-/- mice showed a higher mortality from infection

by S. pneumoniae whereas the systemic host defence and

the CSF bacterial clearance were not affected. The

authors suggested, however, that CD14 deficiency

leads to a stronger neutrophil recruitment into the CSF

and an excessive meningeal inflammation [29•].

TLR2 is involved in the recognition of gram-positive

pathogens. TLR2 deficiency leads to an increased sever-

ity of the disease and earlier mortality in murine models

of pneumococcal meningitis. A stronger accumulation of

bacteria in the ventricules and the meninges has also

been observed. A delay in granulocyte recruitment and

a weakened antimicrobial capacity are believed to con-

tribute to the failing host response in TLR2 deficient

mice [52]. TLR2 has also been recently suggested to

play a role in the regulation of TNF-alpha gene expres-

sion in the brain during pneumococcal meningitis;

TLR2 deficiency is associated with enhanced TNF

gene expression in the brain [30].

MyD88, which acts downstream of TLR2, is necessary

to mount a robust immune response to S. pneumoniae in
the central nervous system. In transgenic animals lack-

ing MyD88, a marked reduction of CSF pleocytosis and

a decreased expression of cytokines and chemokines

were observed. MyD88 deficiency, however, was asso-

ciated with a worsening of the clinical disease, owing

to a more severe bacteremia and an enhanced expression

of TNF-alpha in the lungs [34•].

The hypothesis that avoiding leukocyte recruitment in

the CSF in order to decrease the local inflammatory

reaction, which would then be beneficial, has recently

been challenged by Brandt et al. [31•]. For example,

treatment with Fucoidin initiated at the time of infec-

tion in experimental pneumococcal meningitis led to a

higher mortality, but had no measurable effect on brain

damage or bacterial numbers in the CSF compartment.

The highest mortality was associated with an increase in

the numbers of bacteria in the blood, suggesting that

leukocyte blockade affected the host’s ability to control

systemic but not central nervous system infection. This

hypothesis was supported by the observation that the

boosting of the peripheral neutrophil count by pre-

treatment with granulocyte-colony-stimulating factor

(G-CSF) reduced mortality and prevented brain

damage, and led to reduced numbers of bacteria in the

blood and the CSF [33•]. Thus, the degree of systemic

infection and the severity of brain damage are likely to

contribute independently to mortality. This hypothesis

may be supported by the apparent discrepancies

between the previously mentioned study of Brandt and

a recent study that reported the reduction of leukocyte

influx by treatment with a tyrosine kinase inhibitor (tyr-

phostin AG126). This study [32•] in pneumococcal-cell-

wall-induced meningitis showed that the attenuation of

CSF-pleocytosis reduced the increases in blood flow and

intracranial pressure.

Fas (CD95) and Fas ligand (FasL, CD95L) have been

shown to be involved in the acute inflammatory

response by attracting neutrophils and regulating their

survival [53,54]. Increased levels of soluble Fas and

FasL have been found in CSF of patients with bacterial

meningitis. Recent data generated in experimental mod-

els using transgenic animals that lack Fas and FasL,

however, could not find a contribution of Fas/FasL in

the regulation of inflammatory response during pneumo-

coccal meningitis [35].

From the data generated in the reviewed period one

might conclude that a higher neutrophil count before

the initiation of antibiotic therapy is beneficial to limit

the spread of infection and the development of severe

bacteremia. Once antibiotic therapy has been initiated,

however, the contribution of neutrophils to bacterial

clearance in the CSF seems small and pales in compar-

ison to the detrimental effect of high CSF pleocytosis on

brain tissue.
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Modulation of the inflammatory reaction by adjuvant

therapy with dexamethasone

Given the contribution of excessive inflammation to the

development of brain damage in bacterial meningitis,

anti-inflammatory adjuvant treatment with dexametha-

sone has been tested in several controlled clinical trials.

Addressing a complete and critical overview on this

topic goes beyond the scope of this review, but has

been recently done by others [36••,55••,56••]. For

meningococcal meningitis, dexamethasone was not pro-

ven to be effective in decreasing sequelae among pedia-

tric patients in a recent study performed in Brazil [40•].

Another recent retrospective population-based study

performed in Sydney (1994–1999) in childhood pneumo-

coccal meningitis demonstrated that, in a population

with good access to health care, early recognition of

pneumococcal meningitis and treatment with adjunctive

dexamethasone significantly improved mortality and

severe disabilities in survivors [39•]. In another study

performed in a pediatric intensive care unit in France

[7•], dexamethasone treatment did not influence in-hos-

pital death in a multivariate analysis; however, the ben-

eficial effect may have been reduced by the delay

between antibiotic and steroid administration and the

selection of a high-severity population (49% mortality).

Experimental studies on the use of adjunctive dexa-

methasone have generated conflicting data. Whereas

dexamethasone treatment was shown to increase both

acute hippocampal injury and long-term learning defi-

cits in an infant rat model [57], it decreased neurological

sequelae and caspase activity in an adult rat model [37].

The measured outcomes, however, were different in

these two studies (hippocampal injury in the first, cas-

pase activity in the cerebellum in the second study), as

well as the protocol for assessment of learning capacity;

a direct comparison is therefore not possible.

Inhibition of inflammatory and/or neurotoxic mediators

Gene knockout technology combined with experimental

meningitis in mice has been used to investigate the role

of inflammation in the development of brain injury.

This has been recently reviewed by Paul et al. [46••].
In TNF-α knockout mice, mortality and spatial memory

deficits were increased in ceftriaxone-treated experi-

mental pneumococcal meningitis [41]. TNF-α has

been shown, however, to participate in postmeningitic

hearing loss, which was reduced by blockade with neu-

tralizing antibodies in a Mongolian gerbil model [44].

Few other selective intervention strategies have been

directed against specific cytokines so far, and ongoing

research focuses on the pattern and kinetic of cytokine

expression during bacterial meningitis [45•]. Thus a

deeper understanding of the role of the various media-

tors in the inflammatory network is a prerequisite for the

development of individual targets for adjuvant therapy.

A number of strategies have been evaluated in infant

models of bacterial meningitis, which, until now, have

not been translated into clinical use (see Table 1). One

main challenge seems to be the difficulty in finding

therapies that are able to attenuate both hippocampal

and cortical damage in bacterial meningitis. For exam-

ple, experimental therapies using metalloproteinase

inhibitors are generally protective against cortical

damage. Furthermore, MMP-inhibition combined with

inhibition of TNF-α converting enzyme (TACE) inhibi-

tory activity has been shown in one study to also protect

from hippocampal dentate gyrus injury. The beneficial

effect on both forms of injury by an MMP/TACE inhi-

bitor, however, was restricted to one compound and

could not be shown for other similar MMP/TACE inhi-

bitors. Thus the beneficial effect of MMP/TACE inhi-

bition may not directly depend on the TACE inhibitory

activity [42•,58,59]. Antioxidant therapy has been shown

to protect the neocortex from damage, but not from hip-

pocampal apoptosis. The beneficial effect on cortical

injury may be attributed to a protective effect on the

cerebral microvasculature leading to an amelioration of

cerebral perfusion [60]. Recently, the continuous admin-

istration of melatonin in a model of ceftriaxone-treated

pneumococcal meningitis in rabbit has been shown to

decrease hippocampal apoptosis. Whether the observed

effect was due to the radical scavenging properties of

melatonin or to its influence on neurotrophic factors’

expression remains to be clarified [43•].

Modulation of apoptotic pathways

Caspase inhibitors have been previously shown to attenu-

ate hippocampal apoptosis in the dentate gyrus. While

the beneficial effect of the pan-caspase inhibitor z-

VAD-fmk could be attributed to the down-modulation

of the inflammatory response and associated reduction

of caspase inhibition [61], the specific inhibition of cas-

pase-3 with Ac-DEVD-CHO relied solely on the interfer-

ence with the apoptotic pathway [62]. Recently, it has

been suggested that two phases of apoptosis were dis-

cernible. Neuronal injury at 18 h after infection was inde-

pendent of the caspase-3 pathway, and neuronal cell

death at 24 h after infection was attenuated in the

absence of the caspase-3 pathway [47]. Pharmacological

interventions aimed at increasing the survival rate of neu-

rons in pediatric patients with meningitis will therefore

need to take the kinetic aspects of the development of

brain damage into account. Administration of exogenous

brain-derived neurotrophic factor (BDNF) has been

shown to attenuate all forms of brain damage associated

with pneumococcal and GBS meningitis [48•]. The ther-

apeutic strategy of exogenous BDNF administration has
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been further supported by the finding that expression of

endogenous BDNF was found to be decreased by anti-

biotic treatment in experimental pneumococcal meningi-

tis [63]. Furthermore, BDNF exerted a protective effect

on hearing capacity in experimental pneumococcal

meningitis [49•]. Thus, BDNF has been shown to mod-

ulate caspase-dependent and independent pathways of

neuronal damage, but its mechanism of action is still

poorly understood.

A new mechanism to trigger apoptosis has recently been

proposed [50•]. S. pneumoniae was shown to inhibit phos-

phatidylcholine biosynthesis, presumably by the pneu-

mococcal toxins pneumolysin and/or H2O2. The inhibi-

tion of this pathway causes apoptosis in a variety of brain

cells in vitro. In a mouse model of pneumococcal menin-

gitis, hippocampal damage was prevented by treatment

with cytidine diphosphocholine.

Summary

To date, there is no ideal adjunctive therapy for the

treatment of bacterial meningitis in all patient popula-

tions. The available evidence thus far supports the use

of dexamethasone, when given before or together with

the first dose of antibiotics, in children and adults with

pneumococcal or haemophilus meningitis. Dexametha-

sone is not recommended for the treatment of meningo-

coccal, gram-negative bacillary meningitis or for bacter-

ial meningitis in neonates [36••]. Future research into

antibiotic therapy for bacterial meningitis may focus on

limiting the release of bacterial components, provided

that a sufficiently rapid CSF sterilization can be

achieved. Modulation of individual components of the

inflammation cascade may be evaluated while cautiously

keeping an eye on the systemic effects. This was exem-

plified by studies on leukocyte recruitment, where a

decrease in CSF inflammatory parameters and brain

damage did not contribute to a better outcome owing

to an increase in severity of the systemic disease. Such

‘double-edged swords’ are probably hidden in a number

of targets currently investigated as adjunctive strategies.

The complex network of cytokines, chemokines, their

receptors and other inflammatory mediators that partici-

pate in CSF inflammation will require more studies

before a rational neuroprotection strategy can be devel-

oped. Finding a uniform target for adjunctive therapy is

further hampered by the different pathophysiologic

pathways that lead to the distinct forms of brain damage

in bacterial meningitis, that is, necrosis in the cortex,

hippocampal apoptosis and damage to the inner ear.

Finally, meningitis in neonates, children and adults

may need to be considered separately. Future research

may therefore include the differences in the pathophy-

siology of brain damage that arises from meningitis

caused by different pathogens and in defined patient

populations.
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Table 1 Therapeutic interventions in the infant rat models and their effect on cortical and hippocampal injury, as well as

survival (partially adapted from [21,64]). Only new findings covering the period of the review are referenced

Intervention Compound Pathogen

Neuronal injury

Mortality
Recent
referencesCortex Hippocampus

iNOS inhibition Aminoguanidine GBS increase ND ND
Endothelin agonist Bosentan SP decrease no change no change
Antioxidants PBN SP decrease increase no change

GBS decrease decreasea ND
NAC SP decrease no change no change
DFO SP decrease no change no change
TLM SP decrease no change decrease

MMP inhibition GM-6001 SP decrease ND ND
MMP + TACE inhibition BB-1101 SP decrease decrease decrease

TNF484 SP decrease non change no change [42•]
TNF-α neutralization Neutralizing Ab GBS no change decreasea decreaseb

Attenuation of inflammation Dexamethasone SP ND increase no change
GBS decrease ND no change

Caspase inhibition Ac-DEVD-CHO SP ND decrease ND
Neurotrophin BDNF SP ND decrease no change [48•]

GBS decrease decreasea no change
Glutamate antagonist Kynurenic acid GBS decrease decreasea ND

iNOS: inducible nitric oxide synthase; PBN: α-phenyl-butyl nitrone; NAC: N-acetylcysteine; DFO: deferoxamine; TLM: trylizad-mesylate; SP:
Streptococcus pneumoniae; ND: not determined.
aDamage in the dentate gyrus of the hippocampus consisting of pyknotic cells, distinct from caspase-dependent apoptosis.
bOnly when neutralizing antibodies were given systemically, and not intracisternally.
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