77 research outputs found

    Potential impacts of chemical weathering on feldspar luminescence dating properties

    Get PDF
    Chemical weathering alters the chemical composition of mineral grains. As a result, trapped-charge dating signals of primary silicates may be progressively modified. In this study, we treated three feldspar specimens to understand the effect of proton- and ligand-promoted dissolution on their luminescence properties. We conducted kinetic experiments over 720 h using two solutions: (1) oxalic acid (pH 3, 20 ∘C), an organic acid with chelating abilities, and (2) aqua regia (pH < 1, 40 ∘C), a mixture of strong acids creating aggressive acid hydrolysis conditions. These two solutions were chosen to provoke, on laboratory timescales, some of the changes that may occur on geological timescales as minerals weather in nature. The effect of the extracting solutions on mineral dissolution was investigated by monitoring the concentration of dissolved elements, while changes in feldspar surface morphology were assessed by scanning electron microscopy (SEM). Subsequent changes in feldspar luminescence in the near-UV (∼ 340 nm) and blue (∼ 410 nm) thermoluminescence (TL) and infrared stimulated luminescence (IRSL) emission bands were assessed at the multi- and/or single-grain levels to gain insight into the emission spectra, dose response, saturation, and anomalous fading characteristics of the feldspars. In all experiments, only minor feldspar dissolution was observed after 720 h. In general, aqua regia, the more chemically aggressive solution, had a larger effect on feldspar dissolution compared to that of oxalic acid. Additionally, our results showed that although the TL and IRSL intensities changed slightly with increasing artificial weathering time, the feldspar luminescence properties were otherwise unmodified. This suggests that chemical alteration of feldspar surfaces may not affect luminescence dating signals obtained from natural samples

    Potential accumulation of toxic trace elements in soils during enhanced rock weathering

    Get PDF
    Terrestrial enhanced rock weathering (ERW) is a carbon dioxide removal technology that aims at accelerating one of the most powerful negative feedbacks on Earth's climate, the chemical weathering of silicates. To achieve this, ERW proposes to spread ground silicate rock on agricultural soils. According to many models, global application rates of 40 tonnes of ground basaltic rock per hectare and per year would be necessary to sequester a significant amount of CO2, representing up to 24% of the current net annual increase in atmospheric CO2. When assessing the viability of ERW as a global geo-engineering strategy, a pivotal but overlooked question to address is whether ERW may lead to toxic trace element accumulation in soils at unauthorized and potentially harmful levels. This study evaluates the legal sustainability of ERW with regard to trace element contents in soils. We compare different trace element accumulation scenarios considering a range of rock sources, application rates and national regulatory limits. The results indicate that, at the suggested annual application rate of 40 tonnes per hectare, the first regulatory limits would be exceeded after 6 and 10 years for copper and nickel, respectively. This study argues in favour of close tailoring of ERW deployment to local conditions in order to tap into its climate mitigation potential while preserving long-term soil uses

    Expansion of Agriculture in Northern Cold-Climate Regions: A Cross-Sectoral Perspective on Opportunities and Challenges

    Get PDF
    Agriculture in the boreal and Arctic regions is perceived as marginal, low intensity and inadequate to satisfy the needs of local communities, but another perspective is that northern agriculture has untapped potential to increase the local supply of food and even contribute to the global food system. Policies across northern jurisdictions target the expansion and intensification of agriculture, contextualized for the diverse social settings and market foci in the north. However, the rapid pace of climate change means that traditional methods of adapting cropping systems and developing infrastructure and regulations for this region cannot keep up with climate change impacts. Moreover, the anticipated conversion of northern cold-climate natural lands to agriculture risks a loss of up to 76% of the carbon stored in vegetation and soils, leading to further environmental impacts. The sustainable development of northern agriculture requires local solutions supported by locally relevant policies. There is an obvious need for the rapid development of a transdisciplinary, cross-jurisdictional, long-term knowledge development, and dissemination program to best serve food needs and an agricultural economy in the boreal and Arctic regions while minimizing the risks to global climate, northern ecosystems and communities

    Rehabilitation and release of orphaned Eurasian lynx (Lynx lynx) in Europe: Implications for management and conservation.

    Get PDF
    Rehabilitation of injured or immature individuals has become an increasingly used conservation and management tool. However, scientific evaluation of rehabilitations is rare, raising concern about post-release welfare as well as the cost-effectiveness of spending scarce financial resources. Over the past 20 years, events of juvenile Eurasian lynx presumably orphaned have been observed in many European lynx populations. To guide the management of orphaned lynx, we documented survival, rehabilitation and fate after the release and evaluated the potential relevance of lynx orphan rehabilitation for population management and conservation implications. Data on 320 orphaned lynx was collected from 1975 to 2022 from 13 countries and nine populations. The majority of orphaned lynx (55%) were taken to rehabilitation centres or other enclosures. A total of 66 orphans were released back to nature. The portion of rehabilitated lynx who survived at least one year after release was 0.66. Release location was the best predictor for their survival. Of the 66 released lynx, ten have reproduced at least once (8 females and 2 males). Conservation implications of rehabilitation programmes include managing genetic diversity in small, isolated populations and reintroducing species to historical habitats. The lynx is a perfect model species as most reintroduced populations in Central Europe show significantly lower observed heterozygosity than most of the autochthonous populations, indicating that reintroduction bottlenecks, isolation and post-release management have long-term consequences on the genetic composition of populations. The release of translocated orphans could be a valuable contribution to Eurasian lynx conservation in Europe. It is recommended to release orphans at the distribution edge or in the frame of reintroduction projects instead of a release in the core area of a population where it is not necessary from a demographic and genetic point of view. Rehabilitation programmes can have conservation implications that extend far beyond individual welfare benefits

    Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease

    Get PDF
    Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.Etude de cohorte sur la santé des étudiantsStopping cognitive decline and dementia by fighting covert cerebral small vessel diseaseStudy on Environmental and GenomeWide predictors of early structural brain Alterations in Young student

    Genetic Variants For Head Size Share Genes and Pathways With Cancer

    Get PDF
    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer
    corecore