209 research outputs found

    Extremely asymmetrical scattering in gratings with varying mean structural parameters

    Get PDF
    Extremely asymmetrical scattering (EAS) is an unusual type of Bragg scattering in slanted periodic gratings with the scattered wave (the +1 diffracted order) propagating parallel to the grating boundaries. Here, a unique and strong sensitivity of EAS to small stepwise variations of mean structural parameters at the grating boundaries is predicted theoretically (by means of approximate and rigorous analyses) for bulk TE electromagnetic waves and slab optical modes of arbitrary polarization in holographic (for bulk waves) and corrugation (for slab modes) gratings. The predicted effects are explained using one of the main physical reasons for EAS--the diffractional divergence of the scattered wave (similar to divergence of a laser beam). The approximate method of analysis is based on this understanding of the role of the divergence of the scattered wave, while the rigorous analysis uses the enhanced T-matrix algorithm. The effect of small and large stepwise variations of the mean permittivity at the grating boundaries is analysed. Two distinctly different and unusual patterns of EAS are predicted in the cases of wide and narrow (compared to a critical width) gratings. Comparison between the approximate and rigorous theories is carried out.Comment: 16 pages, 5 figure

    Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays

    Get PDF
    This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to small gradual variations in the grating amplitude are determined. The main features of these types of scattering in non-uniform arrays are explained by the diffractional divergence of the scattered wave inside and outside the array.Comment: 13 pages, 10 figure

    Double-resonant extremely asymmetrical scattering of electromagnetic waves in periodic arrays separated by a gap

    Get PDF
    Two strong simultaneous resonances of scattering--double-resonant extremely asymmetrical scattering (DEAS)--are predicted in two parallel, oblique, periodic Bragg arrays separated by a gap, when the scattered wave propagates parallel to the arrays. One of these resonances is with respect to frequency (which is common to all types of Bragg scattering), and another is with respect to phase variation between the arrays. The diffractional divergence of the scattered wave is shown to be the main physical reason for DEAS in the considered structure. Although the arrays are separated, they are shown to interact by means of the diffractional divergence of the scattered wave across the gap from one array into the other. It is also shown that increasing separation between the two arrays results in a broader and weaker resonance with respect to phase shift. The analysis is based on a recently developed new approach allowing for the diffractional divergence of the scattered wave inside and outside the arrays. Physical interpretations of the predicted features of DEAS in separated arrays are also presented. Applicability conditions for the developed theory are derived.Comment: 8 pages, 5 figure

    Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes

    Get PDF
    A highly unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a slab with the mean permittivity that is larger than that of the surrounding media. This pattern is shown to exist in the geometry of grazing-angle scattering (GAS), that is when the scattered wave (+1 diffracted order) in the slab propagates almost parallel to the slab (grating) boundaries. The predicted resonances are demonstrated to be unrelated to resonant generation of the conventional guided modes of the slab. Their physical explanation is associated with resonant generation of a completely new type of eigenmodes in a thick slab with a periodic grating. These new slab eigenmodes are generically related to the grating; they do not exist if the grating amplitude is zero. The field structure of these eigenmodes and their dependence on structural and wave parameters is analysed. The results are extended to the case of GAS of guided modes in a slab with a periodic groove array of small corrugation amplitude and small variations in the mean thickness of the slab at the array boundaries.Comment: 16 pages, 6 figure

    Energy transfer between a biological labelling dye and gold nanorods

    Get PDF
    We have demonstrated energy transfer between a biological labelling dye (Alexa Fluor 405) and gold nanorods experimentally and theoretically. The fluorescence lifetime imaging microscopy and density matrix method are used to study a hybrid system of dye and nanorods under one- and two-photon excitations. Energy transfer between dye and nanorods via the dipole–dipole interaction is found to cause a decrease in the fluorescence lifetime change. Enhanced energy transfer from dye to nanorods is measured in the presence of an increased density of nanorods. This study has potential applications in fluorescence lifetime-based intra-cellular sensing of bio-analytes as well as nuclear targeting cancer therap

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas

    Get PDF
    Strongly confined surface plasmon-polariton modes can be used for efficiently delivering the electromagnetic energy to nano-sized volumes by reducing the cross sections of propagating modes far beyond the diffraction limit, i.e., by nanofocusing. This process results in significant local-field enhancement that can advantageously be exploited in modern optical nanotechnologies, including signal processing, biochemical sensing, imaging and spectroscopy. Here, we propose, analyze, and experimentally demonstrate on-chip nanofocusing followed by impedance-matched nanowire antenna excitation in the end-fire geometry at telecom wavelengths. Numerical and experimental evidences of the efficient excitation of dipole and quadrupole (dark) antenna modes are provided, revealing underlying physical mechanisms and analogies with the operation of plane-wave Fabry-P\'erot interferometers. The unique combination of efficient nanofocusing and nanoantenna resonant excitation realized in our experiments offers a major boost to the field intensity enhancement up to ∌12000\sim 12000, with the enhanced field being evenly distributed over the gap volume of 30×30×10 nm330\times 30\times 10\ {\rm nm}^3, and promises thereby a variety of useful on-chip functionalities within sensing, nonlinear spectroscopy and signal processing

    Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves

    Get PDF
    [Image: see text] We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 ÎŒm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable for nanophotonic applications

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe
    • 

    corecore