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Two strong simultaneous resonances of scattering—double-resonant extremely asymmetrical scat-
tering (DEAS)—are predicted in two parallel, oblique, periodic Bragg arrays separated by a gap,
when the scattered wave propagates parallel to the arrays. One of these resonances is with respect
to frequency (which is common to all types of Bragg scattering), and another is with respect to
phase variation between the arrays. The diffractional divergence of the scattered wave is shown
to be the main physical reason for DEAS in the considered structure. Although the arrays are
separated, they are shown to interact by means of the diffractional divergence of the scattered wave
across the gap from one array into the other. It is also shown that increasing separation between
the two arrays results in a broader and weaker resonance with respect to phase shift. The analysis is
based on a recently developed new approach allowing for the diffractional divergence of the scattered
wave inside and outside the arrays. Physical interpretations of the predicted features of DEAS in
separated arrays are also presented. Applicability conditions for the developed theory are derived.

I. INTRODUCTION

Extremely asymmetrical scattering (EAS) occurs when
the scattered wave propagates parallel to the front
boundary of a strip-like periodic Bragg array [1-11].
Steady-state EAS is characterized by a strong resonant
increase of the scattered wave amplitudes inside and out-
side the array. The smaller the grating amplitude, the
larger the amplitudes of the scattered waves [3-10]. In
addition, the incident and scattered waves inside the ar-
ray split into three waves each [3-9]. Two of these scat-
tered waves and two of the incident waves inside the ar-
ray are evanescent waves localized near the array bound-
aries [3-6]. The third scattered wave is a plane wave
propagating at a grazing angle into the array [3-6]. All
these features demonstrate that EAS is radically differ-
ent from the conventional Bragg scattering in periodic
arrays.

There are two opposing physical mechanisms affecting
scattering in the extremely asymmetric geometry [3-9].
On the one hand, the scattered wave amplitude must in-
crease along the direction of its propagation (parallel to
the front boundary of the periodic array) due to scatter-
ing of the incident wave inside the array. On the other
hand, the scattered wave amplitude must decrease along
the direction of its propagation due to the diffractional
divergence of this wave [3-9]. This diffractional diver-
gence was demonstrated to be the main physical reason
for EAS. In the steady-state case of scattering in the ge-
ometry of EAS, the contributions to the scattered wave
amplitude from the two opposing mechanisms must ex-
actly compensate each other. A new powerful approach

for a simple theoretical analysis of EAS, based on al-
lowance for the diffractional divergence of the scattered
wave, was introduced and justified [3-9].

It was demonstrated that in non-uniform arrays with
varying phase of the grating, EAS is characterized by two
simultaneous resonances—one with respect to frequency,
and the other with respect to the phase variation in the
grating [7, 8, 14]. As a result, typical scattered wave
amplitudes in this case appear to be many times larger
than those for EAS in uniform arrays. This effect was
called double-resonant extremely asymmetrical scatter-
ing (DEAS) [7, 8, 14]. DEAS was described for a non-
uniform array that consists of two joint strip-like periodic
arrays with different phases of the grating, i.e. a step-
like variation of the grating phase occurs at the interface
between the arrays [7, 8, 14].

The main physical reason for DEAS is related to the
diffractional divergence of the scattered wave from one of
the joint periodic arrays into another. For example, the
scattered wave from the second array, propagating paral-
lel to the array boundaries, diverges into the first array,
and is re-scattered by the grating in the first array. Due
to the phase difference between the arrays (that should
be close to ), the resultant re-scattered wave appears to
be approximately in phase with the incident wave inside
the first array. Therefore, the amplitude of the incident
wave (that is analogous to a force driving resonant oscil-
lations) is increased due to the constructive interference
with the mentioned re-scattered wave. The same specu-
lations are valid for the second array. This is the reason
for a substantial resonant increase in the scattered wave
amplitude in DEAS compared to EAS [7, 8, 14].
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It was also demonstrated that strong DEAS (i.e.
strong resonance with respect to phase variation between
the arrays) can take place only if the array width is
smaller than a critical width. Physically, half of this
critical width is equal to a distance through which the
scattered wave can be spread inside the array due to the
diffractional divergence before being re-scattered in the
grating [7, 8, 14]. It is obvious that only within this dis-
tance from the interface between the two joint arrays can
the diffractional divergence significantly affect scattering.

The aim of this paper is to demonstrate that strong
DEAS can take place not only in two joint periodic ar-
rays, but also in two oblique, strip-like, periodic arrays
separated by a gap. We will show that separated arrays
can interact with each other by means of the diffractional
divergence of the scattered waves across the gap. This
interaction will be demonstrated to decrease with increas-
ing gap width. The effect of gap width on the incident
and scattered wave amplitudes inside and outside the ar-
rays will be investigated. Steady-state DEAS of bulk
and guided optical waves will be analyzed. Applicability
conditions for the developed approximate theory will be
determined and investigated.

II. COUPLED WAVE EQUATIONS

In this section we present coupled wave equations and
their solutions in the case of DEAS of bulk TE electro-
magnetic waves in two separated uniform periodic arrays
(Fig. 1) that are represented by small sinusoidal varia-
tions of the mean dielectric permittivity:

€s = e+ epexp(iq-r) + e exp(—iq-r), if 0<a < Ly;
€s =€+ eexp(iq-r)+esexp(—iq-r), if L+L; <=z
< L+ Ly + Lo;
otherwise,
(1)

where L; and Lo are the widths of the first and second
arrays (Fig. 1), L is the width of the gap between the
arrays, q is the reciprocal lattice vector, |q| = 27/A, A
is the grating period that is the same in both the arrays,
the mean dielectric permittivity € is the same in all parts
of the structure (inside and outside the arrays), and the
amplitudes of the gratings €; and €5 in the first and the
second arrays are assumed to be small:

le1,2]/e < 1. (2)

€5 = €,

The grating amplitudes €; and €5 can differ in magnitude
and/or in phase. There is no dissipation of electromag-
netic waves inside or outside the array, i.e. € is real and
positive.

A plane TE electromagnetic wave (with the electric
field parallel to the z-axis) is incident onto the first ar-
ray at an angle 6y (measured from the z-axis counter-
clockwise—Fig. 1). We assume that the Bragg condition
is satisfied precisely:

kl - kO = —pq, (3)

FIG. 1: The geometry of DEAS in two non-uniform strip-like
periodic Bragg arrays of width L and L2, separated by a gap
of width L.

where p takes one of the values: +1,+2,..., kg is the
wave vector of the incident wave, ki is parallel to the
array boundaries (Fig. 1), |ki| = |ko| = ko = we'/?/c,
w is the angular frequency, and c is the speed of light in
vacuum.

As has been demonstrated previously [3-9, 14], strong
resonant increase in the scattered wave amplitude in
the extremely asymmetrical geometry can only occur for
small grating amplitudes—see condition (2). In this case,
the two wave approximation [16] is valid, and only two
harmonics in the Floquet expansion—incident and scat-
tered waves—need to be taken into account inside and
outside the array:

E(z) = Ey(z)exp {ikoyz + ikoyy — iwt}
+Ey(x) exp {ikoy — iwt} , (4)

where Ey(x) and E;(x) are the varying amplitudes of
the electric fields in the incident and scattered waves, re-
spectively, ko, = ko cosfy, and ko, = kosinfy. Detailed
discussions of applicability conditions for this approxima-
tion in the cases of EAS and DEAS are presented below
in Section 4.

Similarly to how it was done in [3, 5, 7, 8, 14], the
coupled wave equations in the separated arrays, describ-
ing DEAS, can be derived by means of separate analyses
of the diffractional divergence of the scattered wave (by
means of the parabolic equation of diffraction [3, 7, 8, 14]
or Fourier analysis [5, 14]), and scattering (by means of
the conventional theory of scattering [5, 15, 16, 21-23]).
In the steady-state DEAS the contribution to the scat-
tered wave amplitude from scattering is exactly compen-
sated by the contribution from the diffractional diver-
gence. In the same fashion as in [5, 8, 14], the com-



parison of these contributions leads to the coupled wave
equations in the separated arrays:

iKllEl(l‘) if 0 SSC S Ll,
d _Jo if L1 <xz<L+ Ly,
aEO(JC) T ) iKpEy(x) if L+L; <ux (5)
§L+L1+L27

i— KolEo(J?) if 0 S x S Ll,

d_2E()_ 0 if Ly <x <L+ L,
de L B iKOQEo({E) if L + L1 S X
S L + Ll + L27
(6)
where
Kij =T cosn/ cos by, (7)
Koj = =2k Tg;sin(n — 6p), (8)

indices j = 1,2 correspond to the first and second ar-
rays, respectively, 7 is the angle between the direction of
propagation of the incident wave and the zp-axis (Fig.
1), T'g; and I'y; are the coupling coefficients in the well-
known coupled wave equations [5, 15, 16, 21-23]

dEo/d{,CO = i].—‘le‘l7 dEl/d.’L'o = iFU]‘Eo (9)
for the conventional dynamic theory of scattering in two
isolated uniform arrays with the grating fringes parallel
to the array boundaries, and with the grating amplitudes
€1 (for j =1) and e (for j = 2).

Note that Equations (5)—(9) are directly applicable for
the description of DEAS of all types of waves, including
optical modes guided by a slab with a periodically cor-
rugated boundary. In this case, the plane of Fig. 1 is
the plane of a guiding slab, and the incident and scat-
tered waves are modes guided by this slab. The only
difference between scattering of different types of waves
are different values of coupling coefficients I'g; and I'y;
that are already determined in the conventional theory
of scattering [5, 15, 16, 21-23]. For example, in the case
of bulk TE electromagnetic waves in arrays described by
Equation (1) we obtain [5, 16]:

Loj =-T7; = —e;wQ/[QCQkO cos ). (10)
We have also used k; instead of ko in Equation (8), be-
cause for guided optical modes k; may not be equal to
ko (e.g., for scattering of TE modes guided by a slab into
TM modes of the same slab).

The solutions to coupled wave equations (5) and (6)
inside the first (j = 1) and the second (j = 2) arrays can
be written as [3, 5, 9, 14]:

Ei(z) = Cijexp(idijz) + Cyjexp(irg;x)
+Cs; exp(idz;x),

Eo(x) = Dijexp(idijz) + Dojexp(irgjz) (11)
+Ds; exp(ids;x),

3

where A1 = v;, Aoj = —(1 —i3Y/2)y;/2, Ag; = —(1 +
i31/2)7;/2, and

75 = [Koj K] >, (12)
In front of and behind the arrays,

El(x) = A17 EO('T) = E007 if z < 07 (13)
El(l‘) = Ag, E()(SC) = Fo1, if @ > L+ Ly + Lo.
In the gap between the arrays (i.e. for L1 < x < L+ L)
Equations (5) and (6) yield:

E1(.’L‘) = A21 + AQQZC,E[)(.T) = B. (14)

These equations suggest that, although there is no scat-
tering in the gap between the arrays, the scattered wave
amplitude is not constant due to the interaction between
the scattered waves diverging from each of the two arrays.

A relationship between the amplitudes of the inci-
dent and scattered waves inside the array C;; and Dj;
(j = 1,2; 4 = 1,2,3) can be established by substituting
Equations (11) into Equations (6):

Cij = \i;Dij /[ K (15)

The remaining unknown constants Ay, Az, Aay, Agg,
B, Ep1, and D;; can be determined from the bound-
ary conditions [7, 8] of continuity of the fields and their
derivatives across the four array boundaries (note how-
ever, that in the considered two-wave approximation, the
derivatives of the fields in the incident wave are not con-
tinuous across the boundaries [5-9, 14]. The resultant
analytical equations for these constants (amplitudes) ap-
pear to be too awkward to be presented here. Instead, in
the next section we analyze these solutions numerically
for different gap widths and array parameters.

IIT. ANALYSIS OF DEAS IN SEPARATED
ARRAYS

As expected, the form of solutions (11)—(13) is the
same as for two joint uniform arrays [7, 14]. However,
due to the presence of the gap with the field given by
Equation (14), the overall pattern of scattering changes
substantially. That is, the particular dependencies of the
incident and scattered wave amplitudes F1(z) and Ey(z)
inside and outside the arrays are noticeably different from
those obtained for EAS and DEAS in uniform and non-
uniform arrays without the gap [7-9, 14]. This will be
seen from the figures below.

Equations (11)—(15) are also written in such a way that
they are valid for any types of waves, including guided
TE and TM modes in a slab with a corrugated interface.
The boundary conditions at the array boundaries will
also be the same for all types of waves, because actually
there are no physical boundaries since the mean param-
eters of the media are the same inside and outside the



array. Therefore, we can consider bulk TE electromag-
netic waves in arrays described by Equation (1), keeping
in mind that all the results below are valid, for example,
for DEAS of guided optical modes [7, 8, 14].
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FIG. 2: The dependencies of relative (normalized) amplitudes
of the scattered wave at the front array boundary on phase
shift ¢ between the arrays for different values of gap width L:
(a) L=0, (b) L =3pm, (c) L =6nm, (d) L = 9pm, and
(e) L = +o0. Scattering of bulk TE electromagnetic waves
takes place in the structure with ¢ = 5, ¢; = |e2| = 5 x 1073,
€2 =€ eXp(i¢)7 0o = 71'/4, Ly = Lz = 15pm, Avacuum = 11m,
the grating period A ~ 0.58 ym, n = 37/8.

Fig. 2 presents typical dependencies of the relative
scattered wave amplitude at the front boundary of the
first array (i.e. at x = 0) on the phase variation ¢ be-
tween the arrays for different values of the gap width
L. The structural parameters are as follows: € = 5,
€1 = |lea] = 5 x 1073, ea = erexp(i¢), Oy = w/4,
Ly = Ly = 15pm, i.e. the two separated arrays, apart
from a phase difference ¢ between them, are identical.
The period of the structure A is also the same for both the
arrays, and is unambiguously determined by the Bragg
condition (3) and the angle of incidence 6p: A a2 0.58 pm,
and n = 37/8. The wavelength in vacuum is A = 1 pm.

Fig. 2 demonstrates that as the gap width decreases,
the maximum of the scattered wave amplitude at an op-
timal (resonant) value of ¢ becomes sharper and stronger
until the gap width reaches zero (curve (a)). It can be
seen that even if the arrays are separated, they can ef-
fectively interact across the gap, which results in DEAS.
Since the scattered waves in both the arrays propagate
parallel to the array boundaries (Fig. 1), the interaction
(interference) between the waves can only occur due to
their diffractional divergence from one array into another
across the gap. This clearly demonstrates not only a
new interesting effect in periodic arrays in the extremely
asymmetrical geometry, but also most explicitly confirms
the unique role of the diffractional divergence in DEAS.

Curves (b)—(d) in Fig. 2 show the transition from

DEAS in the joint arrays (curve (a)) to EAS in the uni-
form array of L; = 15pm (curve (e)) as the gap width
increases from zero to infinity. Even small gap widths,
e.g., L = 3pm (curve (b) in Fig. 2), which is about
seven wavelengths in the structure, result in a notice-
able decrease of the scattered wave amplitude compared
to DEAS in the joint arrays. This is because the effec-
tiveness of the diffractional divergence in spreading the
scattered wave across the gap quickly decreases with in-
creasing gap width.
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FIG. 3: Solid and dashed curves in (a)-(c) present the de-
pendencies of relative scattered wave amplitudes at the front
boundary = 0 on gap width L for bulk TE electromagnetic
waves in the structure with € = 5, ¢1 = |e2] = 5 X 1073,
€2 = e1exp(ig), O = 7/4, Avacuum = lpm, ¢ = ¢,¢ (solid
curves), and ¢ = 0 (dashed curves); (a) Ly = Ly = 10m;
(b) L1 = L2 = 1511II1, (C) L1 = LQ = QOpm Dotted
lines: L = 400 (i.e., uniform isolated arrays of widths L1);
dash-and-dot lines: L = 0 and ¢ = 0 (i.e., uniform isolated
arrays of widths 2L,). Resonant values ¢,5 of the phase
shift between the arrays (i.e., the values of ¢ at which the
scattered wave amplitude is maximal at the front bound-
ary x = 0) are presented in (d) as functions of gap width
L: (1) Li = Ly = 10pm; (2) L1 = Ly = 15pm; (3)
L1 = L2 =20 nm.

The dependencies of maximal scattered wave ampli-
tudes at the front array boundary (i.e. at z = 0) on
gap width L in the case of DEAS are presented by the
solid curves in Fig. 3a—c for different array widths:
(a) Ly = Ly = 10pm, (b) L1 = Ly = 15um, (c)
L1 = Ly = 20m. Fig. 3d presents the resonant phase
shifts ¢, s between the arrays as functions of gap width L
for the same array widths: 10 pm (curve 1), 15 pm (curve



2), and 20 pm (curve 3). In other words, each value of
|E1(0)/Eoo| given by the solid curves in Fig. 3a-c has
been determined at the corresponding resonant value of
the phase shift ¢ = ¢, given by Fig. 3d. The index
f in ¢,s indicates that this is the value of the phase
shift at which the scattered wave amplitude is maximal
at the front boundary x = 0. Dotted lines in Fig. 3a—
correspond to EAS in the first of the uniform arrays in
the absence of the second array. Obviously, these lines
must also correspond to the case when the gap is in-
finitely large. Therefore, if the gap width increases to
infinity, the solid curves in Fig. 3a—c tend to the dotted
lines. The dashed curves in Fig. 3a—c present the am-
plitudes of the scattered wave at the front boundary of
the first array as functions of gap width L for zero phase
shift ¢ = 0 (i.e. for EAS in separated arrays). In this
case, the interaction between the arrays does not result
in a significant increase in the scattered wave amplitude
compared to EAS in the first uniform array (the dot-
ted lines). The amplitude of the scattered wave at the
front boundary of the first array basically varies from its
value for a uniform array of the width 2L; (dash-and-
dot lines in Fig. 3a—c) to the value for the first isolated
uniform array (dashed curves in Fig. 3a—c). This clearly
demonstrates strong differences between DEAS and EAS
in separated arrays. The existence of a phase shift be-
tween the arrays, which is close to the resonant value
(Fig. 3d), results in a substantial resonant increase in
the scattered wave amplitude (solid curves in Fig. 3a—c).

The dependencies of the amplitudes of the incident and
scattered waves on the xz-coordinate inside and between
the arrays is presented in Fig. 4 for resonant values of
¢ = ¢, where ¢, corresponds to maximal scattered wave
amplitudes in the middle of the gap (¢, is very close to,
but not equal to ¢, 7). It can be seen that the amplitude
of the incident wave in the gap is constant, which is ex-
pected since there is no scattering in the gap, and the
diffractional divergence of the incident wave is negligible
(curves 2 and 3 in Fig. 4a, b). A maximum of the incident
wave amplitude is achieved in the gap. However, this
maximum quickly decreases with increasing gap width L
(Fig. 4a, b), reaching Eyo (the amplitude of the incident
wave at the front boundary = 0) when the gap width
is infinite—see curves 4 in Fig. 4a, b).

Fig. 4c, d demonstrate how the increase in the gap
width from zero to infinity results in the transformation
of the x dependencies of the scattered wave amplitudes
which are typical for DEAS in the joint arrays (curves 1
in Fig. 4c, d), into the x dependencies of the scattered
wave amplitudes which are typical for EAS in the uniform
arrays (curves 4 in Fig. 4c, d).

Note that all the curves in Figs. 4a—d are shown only
within the region 0 < x < 2L; + L (recall that in our
examples Ly = Lg). Outside this region, the relative
(normalized) magnitude of the incident wave amplitude
is equal to one (this is the consequence of energy conser-
vation), and the amplitudes of the scattered waves are the
same as at the array boundaries x = 0 and ¢ = 2L, + L
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FIG. 4: Typical dependencies of relative amplitudes of the
incident [(a) and (b)] and scattered [(c) and (d)] waves on
distance z from the front boundary = = 0 for narrow (Li =
Ly < L) arrays for different widths of the gap and arrays: (a)
and (¢): Ly = Ly = 10pm, L = 0 and ¢ = ¢, ~ 190.3° (curves
1); L = 3pm and ¢ = ¢, = 197.2° (curves 2); L = 9pm and
¢ = ¢r = 206.6° (curves 3); L = +oo (curves 4). (b) and
(d): L1 = Ly = 15um, L = 0 and ¢ = ¢, ~ 197.6° (curves
1); L = 3pum and ¢ = ¢, =~ 200.9° (curves 2); L = 9pum and
¢ = ¢r = 199.3° (curves 3); L = +oo (curves 4). ¢, is the
value of ¢ at which the scattered wave amplitude is maximal
in the middle of the gap (note that in general ¢, # ¢,s). All
other structural parameters are the same as for Figs. 3 and
4: € =5, €e1 = |ea] = 5 x 1073, e = &1 exp(i¢), 6o = 7/4,
Avacuum = 1 pm. The edges of the gap between the arrays are
marked by the vertical dotted lines.

(i.e. constant).

It can be seen that DEAS can be strong only if the
array widths L; and Lo (in our examples, L1 = L) are
less than the critical width L. that has been determined
in our previous publications [9, 14]:

B ) _1n1/2
Le ~ 2 {(eh1) Y (E1)aer, [Cor Eoo sin(y — 00)] 1|}/

(16)
(recall that in the considered examples we have assumed
that ¢, = |€2|, i.e. |F01‘ = |F02|, and the critical

widths for the first and the second arrays are equal:
L. = Ly = Le). In Equation (16), (E1)z—r, is the
maximal amplitude of the scattered wave at the inter-
face between the two joint arrays in the limit of large
array widths (i.e. when Ly > L.) [14], and e = 2.718.
Physically, L. is the distance through which the diffrac-
tional divergence can spread the scattered wave along the
r-axis inside the array before this wave is re-scattered



by the grating [9, 14]. In our previous examples, Equa-
tion (16) gives L. ~ 15pm. If the width of the arrays
Ly = Ly < L. (e.g., L1 = 10pm—Fig. 4a, c), then
for the zero gap width the diffractional divergence effec-
tively spreads the scattered wave from the second array
throughout the first array, and vice versa. The inter-
action between the diffracted waves in both the arrays
results in strong DEAS, i.e. in a resonant increase in
the scattered wave amplitude at a resonant phase shift
between the arrays (which should be relatively close to
180°)—see [7, 9, 14] and curve 1 in Fig. 4c. In this case,
the incident wave amplitude, after an insignificant de-
crease near the front boundary, strongly increases, reach-
ing its maximum at the interface between the arrays—see
[14] and curve 1 in Fig. 4a. The detailed physical expla-
nation of this effect has been presented in [14]. The scat-
tered wave with a very large amplitude (typical for the
case with L; < L.—see curve 1 in Fig. 4c) results in a
strong re-scattered wave that within a very short distance
from the front boundary z = 0 appears to be dominating
the original incident wave inside the first array. The am-
plitude of this re-scattered wave quickly increases with
distance into the first array—curve 1 in Fig. 4a. The
small minimum of curve 1 near the front boundary z = 0
is related to scattering of the incident wave (and thus
reducing its amplitude) before the amplitude of the re-
scattered wave becomes dominant (Fig. 4a). Thus, in the
first array, the energy basically flows from the scattered
wave into the incident wave, resulting in a substantial
increase in the incident wave amplitude inside the array.
The phase shift between the arrays (that should be rela-
tively close to 180°) results in reversing the situation in
the second array. That is, the energy of the powerful (at
the interface x = L1) incident wave starts flowing back
into the scattered wave, resulting in the quick reduction
of the incident wave amplitude back to its vale at the
front boundary x = 0 (see [14] and curve 1 in Fig. 4a).

If there is a gap between the arrays, then the diffrac-
tional divergence becomes less effective in spreading the
scattered wave from one array into another. This is be-
cause the typical gradient of the scattered wave ampli-
tude across the gap (i.e. across the wave front) decreases
with increasing gap width. Therefore the divergence of
the scattered wave from one array into another becomes
weaker. As a result, less effective interaction of the sepa-
rated arrays takes place, and the resonant increase of the
scattered wave amplitude becomes smaller (Figs. 2-3).
In addition to this, the minima near the front (z = 0) and
rear (z = 2L; + L) boundaries of the structure become
more pronounced with increasing L (Fig. 4a). This is
related to the reduction of the scattered wave amplitude
inside the arrays (Fig. 4c), which results in the reduction
of amplitude of the re-scattered wave. Thus the distance
from the front boundary, within which the re-scattered
wave becomes dominant over the incident wave, must in-
crease, i.e. the minimum of the incident wave near the
front boundary must shift towards the middle of the first
array—Fig. 4a. On the left-hand side of this minimum

the energy flows from the incident wave into the scattered
wave, and on the other side, in the opposite direction (up
to the rear boundary of the first array). If L # 400, the
overall energy flow in the first array will still be from
the scattered wave into the incident wave (similarly to
DEAS in two joint arrays [14]). This results in larger
amplitudes of the incident wave in the gap compared to
its amplitude at the front boundary z = 0 (Fig. 4a, b).
At the same time, if L — +o0o, then the amplitude of
the incident wave in the gap becomes the same as at the
front boundary. In this case the minimum of the incident
wave amplitude appears to be in the middle of the first
array (Fig. 4a), resulting in overall zero energy flow from
the scattered wave into the incident wave.

This pattern of scattering is typical when L1 < L.—
see Fig. 4a-d. If the array width L; > L., then the
pattern of scattering is different, and is only weakly de-
pendent on width of the gap between the arrays (Fig. 5a,
b). Moreover, in this case, variations of the scattered and
incident wave amplitudes, caused by varying gap width,
are noticeable only within the regions of width ~ L. (in
our example, Equation (16) gives L. ~ 15um) in each
of the arrays next to the gap (Fig. 5a, b). This is quite
expected, since L. is the distance within which the scat-
tered wave can be spread inside the array(s) due to the
diffractional divergence, before being re-scattered by the
grating [7-9, 14].
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FIG. 5: Typical dependencies of relative amplitudes of the
incident (a) and scattered (b) waves on distance x from the
front boundary x = 0 for wide arrays with L1 = Lo = 40 pm
> L. =~ 15pum, and for different gap widths: L = 0 and ¢ =
¢r = 158.6° (curves 1), L = 3pm and ¢ = ¢, = 153.4° (curves
2), L = 400 (curves 3). The other structural parameters are
the same as for Fig. 4. The edges of the gap between the
arrays are marked by the vertical dotted lines.



IV. APPLICABILITY CONDITIONS OF THE
THEORY

Applicability conditions for the two-wave approxima-
tion and for the new approach based on allowance for
the diffractional divergence of the scattered wave are dis-
cussed in [14, 20]. In particular, it has been shown that
the applicability condition derived in [17-19] appears to
be insufficient for the case of EAS, and more restrictive
inequalities should be used:

4(Am/L1)? < if Ly < L, 17
4(Am/Le)* < if Ly > L, (17)
where A\, is the wavelength in the medium, and L. is the
critical width—see Equation (16).

Use of the two wave approximation (which in the case
of strong EAS or DEAS is basically reduced to neglecting
boundary scattering [14] will result in a relative error that
is of the order of the left-hand sides of inequalities (17).

Conditions (17) are written for the case of EAS in an
isolated uniform array of width L; (i.e. for L = 400
in Fig. 1). For DEAS, the amplitudes of the scattered
wave inside and outside the array can be significantly
larger than for EAS [7-9], and there are four boundaries
at which the edge effects can occur (Fig. 1). However, if
L =0and L; < L., then the two waves due to bound-
ary scattering from the joint interfaces of the two arrays
will obviously be in antiphase with each other (since the
phase shift between the arrays is about 180°). The scat-
tered waves due to boundary scattering from the bound-
aries x = 0 and x = 2L, + L will also interfere destruc-
tively. Therefore, the edge effects will mainly result in
an energy flow from the second array to the first array,
while the overall energy flow from the structure will be
approximately zero. Since the arrays are narrower than
the critical width L., the energy flow between the arrays
will be (at least partly) compensated by the diffractional
divergence of the scattered wave.

If there is a gap of width L # 0 between the arrays, the
situation becomes more complicated, because the waves
resulting from boundary scattering may interfere con-
structively (depending on gap with L). This may result
in a significant energy flow from the structure. Never-
theless, this energy flow is of the order of the energy flow
between the arrays across the gap.

These speculations show that the approximate theory
of DEAS is valid if the energy flow between the arrays
(joint or separated), caused by boundary scattering, is
negligible compared to the energy flow in the incident
wave. Therefore, in accordance with [14], the condition
we are looking for can be obtained by the multiplication
of the left-hand side of Equation (17a) by the square
of the ratio of the scattered wave amplitude typical for
DEAS, FEi, to the scattered wave amplitude typical for
EAS, ie. (E1)=400:

42

o (B msocf* <1 if Ly < L. (18)
1

Similarly to inequalities (17), relative errors of using
the developed approximate approach for DEAS in narrow
arrays are of the order of the left-hand side of condition
(18).

Finally, the approximate theory of EAS and DEAS,
presented in this paper and in [3-9, 14], also neglects the
second order derivatives of the incident wave amplitude
with respect to the x coordinate in the array. The analy-
sis of the solutions for the incident wave inside the array,
obtained in [3-9, 14], gives that, despite a significant gra-
dient of the incident wave amplitude Eq(z), especially in
narrow arrays (see for example curve 4 in Fig. 4a), the
second order derivative d?Ep/dz? is about three orders
of magnitude smaller than the term with the first order
derivative in Equation (5). Therefore, with a very good
approximation, it can be neglected. Recall that the al-
lowance for the second order derivative of the scattered
wave amplitude is crucial for the geometry of EAS. In the
new approach, this derivative is automatically taken into
account through the consideration of the diffractional di-
vergence of the scattered wave—see above.

For example, for DEAS described by curves 1-3 in Fig.
4b, d inequality (18) gives an error less than = 1%. How-
ever, for curves 1-3 in Fig. 4a, c, inequality (18) gives
errors from ~ 10% for curves 1 to & 3% for curves 3. This
demonstrates that the two-wave approximation and the
developed approach provide good accuracy for the con-
sidered examples of scattering, especially for the struc-
ture with L1 = 15 pum. Only for very large scattered wave
amplitudes (curves 1 in Fig. 4a, c¢) is it preferable to use
the rigorous numerical methods [12, 17, 20].

V. CONCLUSIONS

In this paper we have demonstrated that the diffrac-
tional divergence of the scattered wave in the extremely
asymmetrical geometry may result in a very noticeable
interaction of two strip-like periodic arrays separated by
a gap. Due to this divergence, the scattered waves from
each of the separated arrays penetrate into the neigh-
boring array across the gap. As a result, an optimal
(resonant) phase shift between the arrays is shown to
exist, resulting in the double-resonant extremely asym-
metrical scattering, i.e. strong resonant increase of the
scattered wave amplitude in both the arrays and in the
gap between them. Clear physical interpretation of the
obtained results, based on allowance for the diffractional
divergence, is presented.

The recently introduced approach for simple analyti-
cal (approximate) analysis of EAS and DEAS, based on
the allowance for the diffractional divergence of the scat-
tered wave, has been extended to the case of two arrays
separated by a gap. One of the significant advantages of
this approach is that it is immediately applicable to all
types of waves, including bulk, guided, and surface opti-
cal and acoustic waves in oblique periodic Bragg arrays
with sufficiently small grating amplitude, and thickness



that is much larger than the wavelength of the incident
wave (or the grating period). For example, the derived
couple wave equations describe DEAS of optical modes
guided by a slab with a corrugated boundary if the cou-
pling coefficients I'g; and I'y; are taken from the known
coupled wave theories for the conventional Bragg scat-
tering [15, 21-23]. Therefore, all the graphs presented
above are valid for slab modes if the wave numbers of
the incident and scattered modes are equal: kg = k1 (i.e.
there is no mode transformation in the process of scatter-
ing), and the structural parameters of the periodic cor-
rugation are adjusted so that the numerical values of the

coefficients I'g; and I'y; for guided modes are the same
as for the considered cases of DEAS of bulk waves. In
addition, the angle of incidence, wavelength of the slab
modes, and the array widths must also be the same as in
the considered examples.

Potential applications of the analyzed effect include
signal-processing devices, optical sensors and measure-
ment techniques (the scattering is expected to be unusu-
ally sensitive to mean structural parameters in the gap,
due to strong dependence of the diffractional divergence
on even small variations of these parameters).
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