183 research outputs found
Encoding of event timing in the phase of neural oscillations
ime perception is a critical component of conscious experience. To be in synchrony with the environment, the brain must deal not only with differences in the speed of light and sound but also with its computational and neural transmission delays. Here, we asked whether the brain could actively compensate for temporal delays by changing its processing time. Specifically, can changes in neural timing or in the phase of neural oscillation index perceived timing? For this, a lag-adaptation paradigm was used to manipulate participants' perceived audiovisual (AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-tagging of auditory and visual cortical responses. As participants' perception of AV simultaneity shifted, systematic changes in the phase of entrained neural oscillations were observed. This suggests that neural entrainment is not a passive response and that the entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural timing in auditory cortices linearly map participants' perceived AV simultaneity. To our knowledge, these results provide the first mechanistic evidence for active neural compensation in the encoding of sensory event timing in support of the emergence of time awareness
Fast Optimal Transport Averaging of Neuroimaging Data
Knowing how the Human brain is anatomically and functionally organized at the
level of a group of healthy individuals or patients is the primary goal of
neuroimaging research. Yet computing an average of brain imaging data defined
over a voxel grid or a triangulation remains a challenge. Data are large, the
geometry of the brain is complex and the between subjects variability leads to
spatially or temporally non-overlapping effects of interest. To address the
problem of variability, data are commonly smoothed before group linear
averaging. In this work we build on ideas originally introduced by Kantorovich
to propose a new algorithm that can average efficiently non-normalized data
defined over arbitrary discrete domains using transportation metrics. We show
how Kantorovich means can be linked to Wasserstein barycenters in order to take
advantage of an entropic smoothing approach. It leads to a smooth convex
optimization problem and an algorithm with strong convergence guarantees. We
illustrate the versatility of this tool and its empirical behavior on
functional neuroimaging data, functional MRI and magnetoencephalography (MEG)
source estimates, defined on voxel grids and triangulations of the folded
cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of
Skye, United Kingdom. Springer, 201
Spatiotemporal signatures of lexicalâsemantic prediction
Although there is broad agreement that top-down expectations can facilitate lexical-semantic processing, the mechanisms driving these effects are still unclear. In particular, while previous electroencephalography (EEG) research has demonstrated a reduction in the N400 response to words in a supportive context, it is often challenging to dissociate facilitation due to bottom-up spreading activation from facilitation due to top-down expectations. The goal of the current study was to specifically determine the cortical areas associated with facilitation due to top-down prediction, using magnetoencephalography (MEG) recordings supplemented by EEG and functional magnetic resonance imaging (fMRI) in a semantic priming paradigm. In order to modulate expectation processes while holding context constant, we manipulated the proportion of related pairs across 2 blocks (10 and 50% related). Event-related potential results demonstrated a larger N400 reduction when a related word was predicted, and MEG source localization of activity in this time-window (350-450 ms) localized the differential responses to left anterior temporal cortex. fMRI data from the same participants support the MEG localization, showing contextual facilitation in left anterior superior temporal gyrus for the high expectation block only. Together, these results provide strong evidence that facilitatory effects of lexical-semantic prediction on the electrophysiological response 350-450 ms postonset reflect modulation of activity in left anterior temporal cortex
A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: Application to M/EEG source imaging
Majorization-minimization (MM) is a standard iterative optimization technique which consists in minimizing a sequence of convex surrogate functionals. MM approaches have been particularly successful to tackle inverse problems and statistical machine learning problems where the regularization term is a sparsity-promoting concave function. However, due to non-convexity, the solution found by MM depends on its initialization. Uniform initialization is the most natural and often employed strategy as it boils down to penalizing all coefficients equally in the first MM iteration. Yet, this arbitrary choice can lead to unsatisfactory results in severely under-determined inverse problems such as source imaging with magneto- and electro-encephalography (M/EEG). The framework of hierarchical Bayesian modeling (HBM) is an alternative approach to encode sparsity. This work shows that for certain hierarchical models, a simple alternating scheme to compute fully Bayesian maximum a posteriori (MAP) estimates leads to the exact same sequence of updates as a standard MM strategy (see the adaptive lasso). With this parallel outlined, we show how to improve upon these MM techniques by probing the multimodal posterior density using Markov Chain Monte-Carlo (MCMC) techniques. Firstly, we show that these samples can provide well-informed initializations that help MM schemes to reach better local minima. Secondly, we demonstrate how it can reveal the different modes of the posterior distribution in order to explore and quantify the inherent uncertainty and ambiguity of such ill-posed inference procedure. In the context of M/EEG, each mode corresponds to a plausible configuration of neural sources, which is crucial for data interpretation, especially in clinical contexts. Results on both simulations and real datasets show how the number or the type of sensors affect the uncertainties on the estimates
A reusable benchmark of brain-age prediction from M/EEG resting-state signals
Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints
A unified view on beamformers for M/EEG source reconstruction
Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging
Recommended from our members
MEG and EEG data analysis with MNE-Python
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne
Inverse Modeling for MEG/EEG data
We provide an overview of the state-of-the-art for mathematical methods that
are used to reconstruct brain activity from neurophysiological data. After a
brief introduction on the mathematics of the forward problem, we discuss
standard and recently proposed regularization methods, as well as Monte Carlo
techniques for Bayesian inference. We classify the inverse methods based on the
underlying source model, and discuss advantages and disadvantages. Finally we
describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur
Electrophysiological modeling in generalized epilepsy using surface EEG and anatomical brain structures
Deep brain structures involve significantly in the pathology of brain diseases such as epilepsy, Alzheimer, and Parkinson. Physiological brain modeling has become an emerging approach to investigate the coupling dynamics of the brain activity ofthese diseases. We propose a method using the surface EEG signals integrated with the anatomical individual brain to build the electrophysiological model of the epileptic patientâs brain. The EEG-driven model is used to investigate the deep brain activities of 23 patients diagnosed with generalized epilepsy from CHB-MIT Scalp EEG Database. Significant changes in the electrical activities in hippocampus, accumbens, amygdala, provide us insights into the dynamics ofactive brain regions during epilepsy. All of these brain regions show the significant energy variation defined by 5 features (Mean, Max, Min, Standard deviation, Power spectral density) with the p-value < 0.05 in both pre-ictal vs ictal and ictal vs post-ictal. Such result shows the potential of using EEG as a tool to capture the deep brain activity of epilepsy and other diseases that alter deep brain structures. The proposed model may be used to enhance the sensitivity of detecting and predicting epilepsy, detect the progression of the brain lesion, and support the decision-making for a brain medical intervention
- âŠ