
Montoya-Martínez et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:97
http://asp.eurasipjournals.com/content/2014/1/97

RESEARCH Open Access

A regularized matrix factorization approach to
induce structured sparse-low-rank solutions in
the EEG inverse problem
Jair Montoya-Martínez1*, Antonio Artés-Rodríguez1, Massimiliano Pontil2 and Lars Kai Hansen3

Abstract

We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG)
measurements, commonly named as the EEG inverse problem. We propose a new method to induce
neurophysiological meaningful solutions, which takes into account the smoothness, structured sparsity, and low rank
of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix
and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized
functional that includes the �21-norm of the coding matrix and the squared Frobenius norm of the latent source
matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization
problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic
scenarios, the performance of our method with respect to the Group Lasso and Trace Norm regularizers when they
are applied directly to the target matrix.
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1 Introduction
The solution of the electroencephalographic (EEG)
inverse problem to obtain functional brain images is of
high value for neurological research and medical diag-
nosis. It involves the estimation of the Brain Electrical
Sources (BES) distribution from noisy EEG measure-
ments, whose relation is modeled according to the linear
model

Y = AS + E, (1)

where Y ∈ R
M×T and A ∈ R

M×N are known and rep-
resent, respectively, the EEG measurements matrix and
the forward operator (a.k.a lead field matrix), S ∈ R

N×T

denotes the BES matrix, and E ∈ R
M×T is a noise matrix.

M denotes the number of EEG electrodes, N is the num-
ber of brain electrical sources, andT is the number of time
instants.
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This estimation problem is very challenging: N � M,
and the existence of silent BES (BES that produce non-
measurable fields on the scalp surface) implies that the
EEG inverse problem has infinite solutions: a silent BES
can always be added to a solution of the inverse problem
without affecting the EEG measurements. For all these
reasons, the EEG inverse problem is an undetermined
ill-posed problem [1-4].
A classical approach to solve an ill-posed problem is to

use regularization theory, which involves the replacement
of the original ill-posed problem with a ‘nearby’ well-
posed problem whose solution approximates the required
solution [5]. Solutions developed by this theory are stated
in terms of a regularization function, which helps us to
select, among the infinite solutions, the one that best
fulfills a prescribed constrain (e.g., smoothness, spar-
sity, and low rank). To define the constrain, we can use
mathematical restrictions (minimum norm estimates) or
anatomical, physiological, and functional prior informa-
tion. Some examples of useful neurophysiological infor-
mation are [1,6]: the irrotational character of the brain
current sources, the (smooth) dynamic of the neural sig-
nals, the clusters formed by neighboring or functional
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related BES, and the smoothness and focality of the elec-
tromagnetic fields generated and propagated within the
volume conductor media (brain cortex, skull, and scalp).
Several regularization functions have been proposed in

the EEG community: Hämäläinen and Ilmoniemi in [7]
proposed a squared Frobenius norm penalty (‖S‖2F), which
they named Minimum Norm Estimate (MNE). This reg-
ularization function usually induces solutions that spread
over a considerable part of the brain. Uutela et al. in
[8] proposed an �1-norm penalty (‖S‖1). They named
their approach Minimum Current Estimate (MCE). This
penalty function promotes solutions that tend to be scat-
tered around the true sources. Mixed �1�2-norm penal-
ties have also been proposed in the framework of the
time basis, time frequency dictionaries, and spatial basis
decomposition. These mixed norm approaches induce
structured sparse solutions and depend on decomposing
the BES signals as linear combinations of multiple basis
functions, e.g., Ou et al. in [9] proposed the use of tem-
poral basis functions obtained with singular value decom-
position (SVD), Gramfort et al. in [10,11] proposed the
use of time-frequency Gabor dictionaries, and Haufe et al.
in [12] proposed the use of spatial basis Gaussian func-
tions. For a more detailed overview on inverse methods
for EEG, see [2,3,13] and references therein. For a more
detailed overview on regularization functions applied to
structured sparsity problems, see [14-16] and references
therein.
All of these regularizers try to induce neurophysiolog-

ical meaningful solutions, which take into account the
smoothness and structured sparsity of the BES matrix:
during a particular cognitive task, only the BES related
with the brain area involved in such a task will be
active, and their corresponding time evolution will vary
smoothly, that is, the BES matrix will have few nonzero
rows, and in addition, the columns will vary smoothly.
In this paper, we propose a regularizer that takes into
account not only the smoothness and structured sparsity
of the BES matrix but also its low rank, capturing this way
the linear relation between the active sources and their
corresponding neighbors. In order to do so, we propose a
newmethod based onmatrix factorization and regulariza-
tion, with the aim of recovering the latent structure of the
BES matrix. In the factorization, the first matrix, which
acts as a coding matrix, is penalized using the �21-norm,
and the second one, which acts as a dense, full rank latent
source matrix, is penalized using the squared Frobenius
norm.
In our approach, the resulting optimization problem

is nonsmooth and nonconvex. A standard approach to
deal with the nonsmoothness introduced by the nons-
mooth regularizers mentioned above is to reformulate the
regularization problem as a second-order cone program-
ming (SOCP) problem [12] and use interior point-based

solvers. However, interior point-based methods can not
handle large scale problems, which is the case of large EEG
inverse problems involving thousands of brain sources.
Another approach is to try to solve the nonsmooth
problem directly, using general nonsmooth optimization
methods, for instance, the subgradient method [17]. This
method can be used if a subgradient of the objective
function can be computed efficiently [14]. However, its
convergence rate is, in practice, slow (O(1/

√
k)), where k

is the iteration counter. In this paper, in order to tackle the
nonsmoothness of the optimization problem, we depart
from these optimizationmethods and use instead efficient
first-order nonsmooth optimization methods [5,18,19]:
forward-backward splitting methods. These methods are
also called proximal splitting because the nonsmooth
function is involved via its proximity operator. Forward-
backward splitting methods were first introduced in the
EEG inverse problem by Gramfort et al. [10,11,13], where
they used them to solve nonsmooth optimization prob-
lems resulting from the use of mixed �1�2-norm penalties
functions. These methods have drawn, increasing atten-
tion in the EEG, machine learning, and signal processing
community, especially because of their convergence rates
and their ability to deal with large problems [19-21].
On the other hand, in order to handle the nonconvexity

of the optimization problem, we use an iterative alternat-
ing minimization approach: minimizing over the coding
matrix while maintaining fixed the latent source matrix
and viceversa. Both of these optimization problems are
convex: the first one can be solved using proximal split-
ting methods, while the second one can be solve directly
in terms of a matrix inversion.
The rest of the paper is organized as follows. In

Section 2, we give an overview of the EEG inverse prob-
lem. In Section 3, we present the mathematical back-
ground related with the proximal splitting methods. The
resulting nonsmooth and nonconvex optimization prob-
lem is formally described in Section 4. In Section 5, we
propose an alternating minimization algorithm, and its
convergence analysis is presented in Section 6. Section 7
is devoted to the numerical evaluation of the algorithm
and its comparison with the Group Lasso and Trace Norm
regularizers, which consider partially the characteristics
of the matrix S: its structured sparsity by using the �21-
norm and its low rank by using the �∗-norm, respectively.
The advantages of considering both characteristics in a
single method, like in the proposed one, become clear
in comparison with the independent use of the Group
Lasso and Trace Norm regularizers. Finally, conclusions
are presented in Section 8.

2 EEG inverse problembackground
The EEG signals represent the electrical activity of one or
several assemblies of neurons [22]. The area of a neuron
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assembly is small compared to the distance to the obser-
vation point (the EEG sensors). Therefore, the electro-
magnetic fields produced by an active neuron assembly
at the sensor level are very similar to the field pro-
duced by a current dipole [23]. This simplified model
is known as the equivalent current dipole (ECD). These
ECDs are also known by other names such as BES
and current sources. Due to the uniform spatial orga-
nization of their dendrites (perpendicular to the brain
cortex), the pyramidal neurons are the only neurons
that can generate a net current dipole over a piece of
cortical surface, whose field is detectable on the scalp
[3]. According to [24], it is necessary to add the field
of ∼ 104 pyramidal neurons in order to produce a volt-
age that is detectable on the scalp. These voltages can be
recorded by using different types of electrodes [22], such
as disposable (gel-less, and pre-gelled types), reusable disc
electrodes (gold, silver, stainless steel, or tin), headbands
and electrode caps, saline-based electrodes, and needle
electrodes.
Under the quasi-static approximation of Maxwell’s

equations, we can express the general model for the
observed EEG signals y(t) at time t as linear functions of
the BES s(t) [9]:

y(t) = As(t) + e(t), (2)

where y(t) ∈ R
M×1 is the EEG measurements vec-

tor, s(t) ∈ R
N×1 is the BES vector, e(t) ∈ R

M×1

is the noise vector, and A ∈ R
M×N is the lead field

matrix. In a typical experimental setup, the number of
electrodes (M) is ∼ 102, and the number of BES (N)
is ∼ 103, 104. We can express the former model
for all time instants {t1, t2, . . . , tT} (corresponding to
some observation time window) by using the matrix
formulation (1), where Y = [

y(t1), y(t2), . . . , y(tT )
] ∈

R
M×T , S = [s(t1), s(t2), . . . , s(tT)] ∈ R

N×T , and E =
[e(t1), e(t2), . . . , e(tT )] ∈ R

M×T . The ith row of the matrix
Y represents the electrical activity recorded by the ith
EEG electrode during the observation time window. In
the BES matrix S, each row represents the time evolution
of one brain electrical source, and each column repre-
sents the activity of all the corresponding sources in a
particular time instant. Finally, the forward operator A
summarizes the geometric and electric properties of the
conducting media (brain, skull, and scalp) and establishes
the link between the current sources and EEG sensors (Aij
tells us how the jth BES influences the measure obtained
by the ith electrode). Following this notation, the EEG
inverse problem can be stated as follows: Given a set of
EEG signals (Y) and a forward model (A), estimate the
current sources within the brain (S) that produce these
signals.

3 Mathematical background
3.1 Proximity operator
The proximity operator [19,25] corresponding to a convex
function f is a mapping from R

n to itself and is defined as
follows:

proxf (z) = argmin
x∈Rn

{
f (x) + 1

2
‖x − z‖2

}
, (3)

where ‖· ‖ denotes the Euclidean norm. Note that the
proximity operator is well defined, because the above
minimum exists and is unique (the objective function if
strongly convex).

3.2 Subdifferential-proximity operator relationship
If f is a convex function on R

n and y ∈ R
n, then [26]

x ∈ ∂ f (y) ⇔ y = proxf (x + y), (4)

where ∂ f (y) denotes the subdifferential of f at y.

3.3 Principles of proximal splittingmethods
Proximal splitting methods are specifically tailored to
solve an optimization problem of the form

minimize
S

f (S) + r(S), (5)

where f (S) is a smooth convex function, and r(S) is also
a convex function, but nonsmooth. From convex analysis
[17], we know that S is a minimizer of (5) if and only if
0 ∈ ∂(f + r)(S). This implies the following [18]:

0 ∈ ∂(f + r)(S) ⇔ 0 ∈ {∂ f (S) + ∂r(S)}
⇔ −∇f (S) ∈ ∂r(S)
⇔ −γ∇f (S) ∈ γ ∂r(S)
⇔ (S − γ∇f (S)) − S ∈ ∂γ r(S)

Using (4) in the former expression, we get

S = proxγ r(S − γ∇f (S)) (6)

Equation 6 suggests that we can solve (5) using a fixed
point iteration:

Sk+1 = proxγ r(Sk − γ∇f (Sk)) (7)

In optimization, (7) is known as forward-backward split-
ting process [19]. It consists of two steps: first, it performs
a forward gradient descend step S∗

k = Sk − γ∇f (Sk) and
then it performs a backward step Sk+1 = proxγ r(S∗

k).
From (7), we can see the importance of the proxim-

ity operator (associated to γ r(S)) with respect to the
forward-backward splitting methods, since their main
step is to calculate it. If we would have a closed-form
expression for such proximity operator or if we could
approximate it efficiently (with the approximation errors
decreasing at appropriate rates [27]), then we could effi-
ciently solve (7). Furthermore, when f has a Lipschitz
continuous gradient, there are fast algorithms to solve (7).
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For instance, the Iterative Soft Thresholding Algorithm
(ISTA) has a convergence rate of O(1/k), and the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) has
a convergence rate of O(1/k2) [5].

4 Problem formulation
The regularized EEG inverse problem can be stated as
follows:

Ŝ = argmin
S

{
1
2
||AS − Y||2F + λ�(S) , λ > 0

}
, (8)

where 1
2 ||AS − Y||2F is the square loss function (‖ ‖F

denotes the Frobenius norm), and λ�(S) is a nonsmooth
penalty term that is used to encode the prior knowledge
about the structure of the target matrix S.
In order to induce structured sparse-low-rank solutions,

we propose to reformulate (1) using a matrix factorization
approach, which involves expressing the matrix S as the
product of two matrices, S = BC, obtaining the following
nonlinear estimation model:

Y = ABC + E, (9)

where B and C are penalized using the �21-norm and
the squared Frobenius norm, respectively. The resulting
optimization problem can be stated as follows:

B̂, Ĉ = argmin
B,C

{
1
2
‖A(BC) − Y‖2F + λ

( N∑
i=1

‖B(i, :)‖2

+ ρ

2

K∑
i=1

‖C(i, :)‖22
)}

= argmin
B,C

{
1
2
‖A(BC)−Y‖2F+λ

(
‖B‖2,1+ ρ

2
‖C‖2F

)}
,

(10)

where λ > 0, ρ > 0, B ∈ R
N×K , C ∈ R

K×T , and B(i, :),
C(i, :) denote the ith row of B and C, respectively. K 

{N ,T}, λ, and ρ are parameters of the model that must be
adjusted.
In this formulation, which we denote as matrix factor-

ization approach, the �21-norm and the squared Frobenius
norm induce structured sparsity and smoothness in the
rows of B and C, respectively, and therefore also in the
rows of S. Finally, the parameter K encloses the low rank
of S:

rank(B) ≤ min {N ,K} ⇒ rank(B) ≤ K
rank(C) ≤ min {K ,T} ⇒ rank(C) ≤ K

rank(BC) ≤ min {rank(B), rank(C)} ≤ K
⇒ rank(S) ≤ K

Hence, the proposed regularization framework takes into
account all the prior knowledge about the structure of the
target matrix S.

5 Optimization algorithm
5.1 Matrix factorization approach
In this section, we address the issue of implementing
the learning method (10) numerically. We propose the
following reparameterization of (10):

B = √
λρ B̃, C = 1√

λρ
C̃ ⇒ BC =

(√
λρ B̃

) (
1√
λρ

C̃
)

⇒ BC = B̃C̃ (11)

Using (11) in the objective function of (10), we get

⇒ 1
2
‖A(B̃C̃) − Y‖2F + λ

(
‖√

λρ B̃‖2,1 + ρ

2
‖ 1√

λρ
C̃‖2F

)
⇒ 1

2
‖A(B̃C̃) − Y‖2F + λ

√
λρ‖B̃‖2,1 + λρ

2(
√

λρ)2
‖C̃‖2F

⇒ 1
2
‖A(B̃C̃) − Y‖2F + λ̃‖B̃‖2,1 + 1

2
‖C̃‖2F

where λ̃ = λ
√

λρ, and therefore, we get an optimization
problem with only one regularization parameter:

B̂, Ĉ = argmin
B,C

{
1
2
‖A(BC) − Y‖2F + λ‖B‖2,1 + 1

2
‖C‖2F ,λ > 0

}
(12)

The optimization problem (12) is a simultaneous mini-
mization over matrices B and C. For a fixed C, the mini-
mum over B can be obtained using FISTA. On the other
hand, for a fixed B, the minimum over C can be solved
directly in terms of a matrix inversion. These observations
suggest an alternating minimization algorithm [15,28]:

Algorithm 1 Alternating minimization algorithm to solve
the matrix factorization-regularization-based approach
Require: Y ∈ R

M×T , A ∈ R
M×N , C0 ∈ R

K×T , K , λ
repeat

Bt=argmin
B

{
1
2
‖A(BCt−1)−Y‖2F+λ‖B‖2,1+ 1

2
‖Ct−1‖2F

}
(13)

Ct=argmin
C

{
1
2
‖A(BtC) − Y‖2F + λ‖Bt‖2,1 + 1

2
‖C‖2F

}
(14)

until stopping condition is met

In order to obtain the initialization matrix C0, we use
an approach based on the singular value decomposition of
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Y. Without loss of generality, let us work with (9) in the
noiseless case:

Y = ABC (15)

From (15), we can see that {Y1,Y2, . . . ,YM} ⊂ Row
Space(C), where Yi denotes the ith row of Y.
Now, let us obtain a rank-K approximation ofY by using

a truncated SVD (truncated at the singular value σK ):

Y ≈ UM×K	K×KV�
K×T (16)

From the SVD theory [29], we know that
{Y1,Y2, . . . ,YM} ⊂ Row Space

(
V�)

; therefore, we can
choose C0 = V�. Then, given C0, we can start iterating
using (13) and (14).

5.1.1 Minimization overB (fixed C)
The minimization over B can be stated as follows:

Bt = argmin
B

{
FB(B) + λ‖B‖2,1 , λ > 0

}
, (17)

where FB(B) = 1
2‖A(BCt−1) − Y‖2F + 1

2‖Ct−1‖2F. This is
a composite convex optimization problem involving the
sum of a smooth function (FB(B)) and a nonsmooth func-
tion (λ‖B‖2,1). As we have seen in Section 3, this kind of
problem can be efficiently handled using proximal split-
ting methods (e.g., FISTA). In order to apply FISTA to
solve (17), we first need to compute the following:

1. The gradient of the smooth function FB(B)

∇FB(B) = ∂FB(B)

∂B
= A�(A(BCt−1) − Y)C�

t−1

where A� denotes the transpose of the matrix A.
2. An upper bound of the Lipschitz constant (L) of

∇FB(B) (it can also be estimated using a
backtracking search routine [5])

‖∇FB(B1)−∇FB(B2)‖22 =‖A�AB1Ct−1C�
t−1

−A�AB2Ct−1C�
t−1‖22

=‖A�A(B1 − B2)Ct−1C�
t−1‖22

=
K∑
j=1

‖
(
A�A (B1−B2)

) (
Ct−1C�

t−1

)
j
‖22

where
(
Ct−1C�

t−1
)
j denotes the j-th column of the

matrix Ct−1C�
t−1. Taking into account that

‖Qx‖2 ≤ ‖|Q‖|2‖x‖2, ∀x ∈ R
N , ∀Q ∈ R

M×N [29],
where ‖| · ‖|2 denotes the spectral norm , we get:

‖∇FB (B1) − ∇FB (B2) ‖22 =
K∑
j=1

‖
(
A�A (B1 − B2)

)
×

(
Ct−1C�

t−1

)
j
‖22

≤
K∑
j=1

‖|A�A (B1 − B2) ‖|22

× ‖
(
Ct−1C�

t−1

)
j
‖22

≤ ‖|A�A (B1 − B2) ‖|22

×
K∑
j=1

‖
(
Ct−1C�

t−1

)
j
‖22

≤ ‖|A�A (B1 − B2) ‖|22
× ‖Ct−1C�

t−1‖22
(18)

From (18), taking into account that the spectral norm
is submultiplicative (‖|PQ‖|2 ≤ ‖|P‖|2 ‖|Q‖|2, ∀P ∈
R
M×N , ∀Q ∈ R

N×T ), it follows that:

‖∇FB(B1) − ∇FB(B2)‖22 ≤ ‖|A�A‖|22
‖|B1 − B2‖|22 ‖|Ct−1C�

t−1‖22
and, using the fact that ‖|P‖|22 ≤ ‖P‖22, ∀P ∈ R

M×N ,
we obtain:

‖∇FB(B1) − ∇FB(B2)‖22 ≤ ‖|A�A‖|22 ‖B1 − B2‖22
× ‖Ct−1C�

t−1‖22
≤ L ‖B1 − B2‖22 (19)

where L = ‖|A�A‖|2 ‖Ct−1C�
t−1‖2.

3. Proximal operator associated to the nonsmooth
function λ‖· ‖2,1

proxλ‖·‖2,1(B) = argmin
X

{
λ‖X‖2,1 + 1

2
‖X − B‖22

}
=

[(
proxλ‖·‖2,1(B)

)
i,:

]i=N

i=1

=
[

Bi,:
‖Bi,:‖2 (‖Bi,:‖2 − λ)+

]i=N

i=1
(20)

where (· )+ = max(· , 0), and by convention 0
0 = 0.

5.1.2 Minimization over C (fixedB)
The minimization over C can be stated as follows:

Ct = argmin
C

{FC(C)} (21)

where FC(C) = 1
2‖A(BtC) − Y‖2F + λ‖Bt‖2,1 + 1

2‖C‖2F is
a smooth function of C. In what follows, we show how
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the minimum over C can be solved directly in terms of a
matrix inversion:

∇FC(C) = ∂FC(C)

∂C
= Bt

�A�(A(BtC) − Y) + C

∇FC(C) = 0 ⇒ Bt
�A�(A(BtCt) − Y) + Ct = 0

⇒ Ct =
[
Bt

�A�ABt + IK
]−1

Bt
�A�Y

(22)

The matrix
[
Bt

�A�ABt + IK
] ∈ R

K×K , and K is sup-
posed to be small; therefore, calculating its corresponding
inverse matrix is quite cheap.

6 Convergence analysis
We are going to analyze the convergence behavior of
Algorithm 1 by using the global convergence theory of
iterative algorithms developed by Zangwill [30]. Note that
in this theory, the term ‘global convergence’ do not imply
convergence to a global optimum for all initial points. The
property of global convergence expresses, in a sense, the
certainty that the algorithm converges to the solution set.
Formally, an iterative algorithm ξ , on the set X, is said
to be globally convergent provided, for any starting point
x0 ∈ X, the sequence {xn} generated by ξ has a limit point
[31].
In order to use the global convergence theory of iterative

algorithms, we need a formal definition of iterative algo-
rithm, as well as the definition of a set-valued mapping
(a.k.a point-to-set mapping) [30]:

Definition 6.1. Set-valued mapping. Given two sets, X
and Y , a set-valued mapping defined on X, with range in
the power set of Y ,P(Y ), is a map,�, which assigns to each
x ∈ X a subset �(x) ∈ P(Y ),

� : X → P(Y )

Definition 6.2. Iterative algorithm. Let X be a set and
x0 ∈ X a given point. Then, an iterative algorithm ξ , with
initial point x0, is a set-valued mapping

ξ : X → P(X)

which generates a sequence {xn}∞n=1 via the rule xn+1 ∈
ξ(xn), n = 0, 1, . . .

Now that we know the main building blocks of the
global convergence theory of iterative algorithms, we are
in a position to state the convergence theorem related to
Algorithm 1:

Theorem 6.1. Let� denotes the iterative Algorithm 1, and
suppose that given Y ∈ R

M×T , A ∈ R
M×N , B0 ∈ R

N×K ,
C0 ∈ R

K×T , K, and λ, the sequence {Bt,Ct}∞t=1 is generated
and satisfies {Bt+1,Ct+1} ∈ �(Bt,Ct). Also, let �B and
�C denote the solution sets of (13) and (14), respectively:

�B=
{
B ∈ R

N×K ∣∣ 0 ∈ ∂

(
1
2
||A(BCt−1) − Y||2F + λ||B||2,1

+ 1
2
||Ct−1||2F

)}
�C =

{
C ∈ R

K×T ∣∣∇(
1
2
||A(BtC)−Y||2F +λ||Bt||2,1 12 ||C||2F

)
=0

}
Then, the limit of any convergent subsequence of

{Bt,Ct}∞t=1 is in �B and �C.

This convergence theorem is a direct application of
Zangwill’s global convergence theorem [30]. Before going
in this assertion, let us show some definitions and theo-
rems used in the proof.

Definition 6.3. Compact set. A set X is said to be com-
pact if any sequence (or subsequence) contains a convergent
subsequence whose limit is in X. More explicitly, given a
subsequence {xn}n∈N̂ in X, there exists a N̂1 ⊂ N̂ such that

xn → x∞, n ∈ N̂1

with x∞ ∈ X (we write convergence of subsequences as
xn → x∞, which is equivalent to lim

n→∞xn = x∞).

Definition 6.4. Composite map. Let �A : X → Y and
�B : Y → Z be two set-valued mappings. The composite
map �C = �B ◦ �A which takes points x ∈ X to sets
�C(x) ⊂ Z is defined by

�C(x) :=
⋃

y∈�A(x)
�B(y)

Definition 6.5. Closed map. A set-valued mapping � :
X → P(Y ) is closed at x0 ∈ X provided

1. xn → x0 as n → ∞, xn ∈ X
2. yn → y0 as n → ∞, yn, y0 ∈ Y
3. yn ∈ �(xn)

implies y0 ∈ �(x0). The map � is called closed on S ⊂ X
provided is closed at each x ∈ S.

Theorem 6.2. Composition of closed maps. Let �A : X →
Y and �B : Y → Z be two set-valued mappings. Suppose

1. �A is closed at x0
2. �B is closed on �A(x0)
3. if xn → x0 and yn ∈ �A(xn), then there exists

y0 ∈ Y , such that for some sequence
{
ynj

}
, ynj → y0

as j → ∞.

Then, the composite map �C = �B ◦ �A is closed at x0.

Lemma 6.1. [32] Given a real-valued function defined on
X × Y, define the set-valued mapping  : X → P(Y ) by

(x) = argmin
y∈Y

h(x, y)

then,  is closed at x if (x) is nonempty.
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Theorem 6.3. Weierstrass theorem. If f is a real con-
tinuous function on a compact set S ⊂ R

n, then the
problem

argmin
x∈Rn

{
f (x), x ∈ S

}
has an optimal solution x∗ ∈ S.

Theorem 6.4. [30] Zangwill’s global convergence theorem.
Let the set-valued mapping Mx(x) : X → P(X) determine
an algorithm that given a point x0 generates a sequence
{xn}∞n=0 through the iteration xn+1 ∈ Mx(xn). Also, let a
solution set � be given. Suppose

1. All point xn are in a compact set S ⊂ X.
2. There is a continuous function α : X → R such that

(a) if x /∈ �, then α(x′) < α(x) ∀x′ ∈ Mx(x).
(b) if x ∈ �, then α(x′) ≤ α(x) ∀x′ ∈ Mx(x).

3. The mapMx(x) is closed at x if x /∈ �.

Then, the limit of any convergent subsequence of {xn}∞n=0
is in �. That is, accumulation points x∗ of the sequence xn
lie in �. Furthermore, α(xn) converges to α∗, and α(x∗)=α∗
for all accumulation points x∗.

Proof. Theorem 6.1. The iterative algorithm � can be
decomposed into two well-defined iterative algorithms
�B and �C :

�B(Ct−1) = Bt = argmin
B

{
1
2
||A(BCt−1)−Y||2F+λ||B||2,1

+ 1
2
||Ct−1||2F

}
(23)

�C(Bt) = Ct = argmin
C

{
1
2
||A(BtC) − Y||2F

+ λ||Bt||2,1 + 1
2
||C||2F

}
(24)

As we can see from (23) and (24), at iteration t, the result
of �B becomes the input of �C , and at iteration t + 1,
the result of �C becomes the input of �B; therefore, we
can express � as the composition of �C and �B, that is,
�(Ct−1) = �C(�B(Ct−1)):

�C(�B(Ct−1)) = Ct = argmin
C

{
1
2
||A(BtC) − Y||2F

+ λ||Bt||2,1 + 1
2
||C||2F

}
(25)

subject to Bt = argmin
B

{
1
2
||A(BCt−1) − Y||2F

+ λ||B||2,1 + 1
2
||Ct−1||2F

}
Let � be the solution set of �

� =
{
C ∈ R

K×T
∣∣∣ ∂Z(C, t)

∂C
= 0

}
,

where Z(C, t) = 1
2 ||A(BtC) − Y||2F + λ||Bt||2,1 + 1

2 ||C||2F.
To prove this theorem by using Zangwill’s global conver-

gence theorem, we need to prove that all its corresponding
assumptions are fulfilled. In order to prove assumption
1, let us analyze the sequences {Bt}∞t=1 and {Ct}∞t=1. The
sequence {Bt}∞t=1 is generated by using FISTA, which is
a convergent algorithm (Bt → B∞) that guarantees that
Bt ∈ �B [5,18]. Hence, using Definition 6.3, we can
see that the sequence {Bt}∞t=1 generated by (23) lies in a
compact set. On the other hand, the sequence {Ct}∞t=1 is
generated by (22), which guarantees that Ct ∈ �C . This
sequence always converges to a point inside �C , which
implies that �C also lies in a compact set. This concludes
the proof of assumption 1.
To prove assumption 2, let us use Z(C, t) as the function

α(·); thus, in order to verify the fulfillment of assumption
2, we need to prove that

(a) if Ct /∈ �, then Z(Ct+1, t + 1) < Z(Ct, t) ∀Ct+1 ∈
�(Ct)

(b) if Ct ∈ �, then Z(Ct+1, t + 1) ≤ Z(Ct, t) ∀Ct+1 ∈
�(Ct)

From (25), we can see that the sequence {Ct}∞t=1 will
always lie in � (becauseCt is generated by (22)); therefore,
we only need to prove (b).
Let Ct+1 be the solution of (25) at iteration t + 1; this

implies

1
2
||A(Bt+1Ct+1) − Y||2F + λ||Bt+1||2,1 + 1

2
||Ct+1||2F

≤ 1
2
||A(Bt+1C) − Y||2F + λ||Bt+1||2,1

+ 1
2
||C||2F, ∀C ∈ R

K×T

≤ 1
2
||A(Bt+1Ct) − Y||2F + λ||Bt+1 ||2,1

+ 1
2
||Ct||2F

(26)

On the other hand, if Bt+1 is the solution of (23) at
iteration t + 1, this implies
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1
2
||A(Bt+1Ct) − Y||2F + λ||Bt+1||2,1 + 1

2
||Ct||2F

≤ 1
2
||A(BCt) − Y||2F + λ||B||2,1

+ 1
2
||Ct||2F, ∀B ∈ R

N×K

≤ 1
2
||A(BtCt) − Y||2F + λ||Bt||2,1

+ 1
2
||Ct||2F

(27)

and from (26) and (27), we can prove assumption 2(b):

1
2
||A(Bt+1Ct+1) − Y||2F + λ||Bt+1||2,1 + 1

2
||Ct+1||2F

≤ 1
2
||A(BtCt) − Y||2F + λ||Bt||2,1

+ 1
2
||Ct||2F

Z(Ct+1, t + 1) ≤ Z(Ct, t)

In order to prove assumption 3, we need to prove that
� is closed at C if C /∈ �. To do so, we are going to use
Theorem 6.2; therefore, we need to prove that �B and �C
are both closed maps: from (23) and (24), we can see that
their corresponding objective functions are both continu-
ous ∀B ∈ R

N×K and ∀C ∈ R
K×T , respectively; hence, by

using Weierstrass Theorem and Lemma 6.1, we can con-
clude that �B and �C are both closed maps for any Ct−1
and Bt, respectively, and by using Theorem 6.2, we can
conclude that � is closed on any Ct−1.
Finally, from all the previous proofs and Zangwill’s

global convergence theorem, it follows that the limit of any
convergent subsequence of {Bt,Ct}∞t=1 is in �B and �C .

7 Numerical experiments
In this section, we evaluate the performance of the matrix
factorization approach and compare it with the Group
Lasso regularizer:

Ŝ = argmin
S

{
1
2
‖AS− Y‖2F + λ

N∑
i=1

‖S(i, :)‖2 , λ > 0

}
(28)

and the Trace Norm regularizer:

Ŝ = argmin
S

{
1
2
‖AS− Y‖2F + λ

q∑
i=1

σi(S) , λ > 0

}
(29)

where q = min {N ,T} and σi(S) denotes the ith singu-
lar value of S. Both problems (28) and (29) were solved
using the FISTA implementation of the SPArse Modeling
Software (SPAMS) [33,34].

In order to have a reproducible comparison of the differ-
ent regularization approaches, we generated two synthetic
scenarios:

• M = 128 EEG electrodes, T = 161 time instants,
N = 413 current sources within the brain, but only
12 of them are active: 4 main active sources with their
corresponding 2 nearest neighbor sources are also
active. The other 401 sources are not active (zero
electrical activity). Therefore, in this scenario, the
synthetic matrix S is a structured sparse matrix with
only 12 nonzero rows (the rows associated to the
active sources).

• M = 128 EEG electrodes, T = 161 time instants,
N = 2, 052 current sources within the brain, but only
40 of them are active: 4 main active sources with their
corresponding 9 nearest neighbor sources are also
active. The other 2012 sources are not active (zero
electrical activity). Therefore, in this scenario, the
synthetic matrix S is a structured sparse matrix with
only 40 nonzero rows (the rows associated to the
active sources).

In both scenarios, the simulated electrical activity (sim-
ulated waveforms) associated to the four Main Active
Sources (MAS) was obtained from a face perception-
evoked potential study [35,36]. To obtain the simulated
electrical activity associated to each one of the active
neighbor sources, we simply set it as a scaled version of
the electrical activity of its corresponding nearest MAS
(with a scaled factor equal to 0.5). Hence, there is a linear
relation between the four MAS and their corresponding
nearest neighbor sources; therefore, in both scenarios, the
rank of the synthetic matrix S is equal to 4.
As forward model (A), we used a three-shell concen-

tric spherical head model. In this model, the inner sphere
represents the brain, the intermediate layer represents the
skull, and the outer layer represents the scalp [37]. To
obtain the values of each one of the components of the
matrixA, we need to solve the EEG forward problem [38]:
Given the electrical activity of the current sources within
the brain and a model for the geometry of the conducting
media (brain, skull and scalp, with its corresponding elec-
tric properties), compute the resulting EEG signals. This
problem was solved by using the SPM software [39]. Tak-
ing into account the comments mentioned in Section 2,
the N simulated current sources were positioned on a
mesh located on the brain cortex, with an orientation
fixed perpendicular to it.
Finally, the simulated EEG signals were gen-

erated according to (1), where E is a Gaussian
noise G(0, σ 2I) whose variance was set to satisfy a
SNR = 20 log10

( ||AS||F||E||F
)

= 10 dB. Summarizing, our syn-
thetic problems can be stated as follows: Given matrices
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Y ∈ R
128×161 and A ∈ R

128×N , recover the synthetic BES
matrix S ∈ R

N×161. According to this, in both scenarios,
we want to estimate a BES matrix which is structured
sparse and low rank, with its rank equal to the number of
MAS simulated. The activity of the four MAS, the syn-
thetic EEG measurements as well as the sparsity pattern
of the synthetic BES matrix are shown in Figures 1 and 2
(Ground Truth).
We have used cross-validation to select the regulariza-

tion parameter λ associated to the Group Lasso and Trace
Norm regularizers, as well as the parameters λ and K
in the case of the Matrix Factorization approach (K ∈
[1, 2, 3, . . . , 10], λ ∈ [10−3, 10−2, 10−1, . . . , 103]): the rows
ofY are randomly partitioned into three groups of approx-
imately equal size. Each union of two groups forms a
train set (TrS), while the remaining group forms a test
set (TS). This procedure is carried out three times, each
time selecting a different test group. Inverse reconstruc-
tions are carried out based on the training sets, obtaining

different regressionmatrices Ŝi. We then evaluate the root
mean square error (RMSE) using the test sets and the
regression matrices Ŝi:

RMSE :
1
3

3∑
i=1

(
1√

MTSi × T
‖ATSi Ŝi − YTSi‖F

)
,

where YTSi ∈ R
MTSi×T , and ATSi ∈ R

MTSi×N (TSi denotes
the index set of the rows that belongs to the ith test set).
Once the estimated matrix Ŝ has been found, we apply
a threshold to remove spurious sources with almost zero
activity. We have set this threshold equal to the 1% of the
mean energy of all the sources.

7.1 Performance evaluation
In order to evaluate the performance of the regulariz-
ers, we compare the waveform and localization of the
four MAS present in the synthetic BES matrix against
the four MAS estimated by each one of the regularizers.
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Figure 1 Simulation results: waveforms of the MAS, EEG estimated, and sparsity pattern of the estimated BES matrix. Experiment setup:
413 sources, 128 EEG electrodes, 161 time instants, 4 main active sources with their corresponding 2 nearest neighbor sources also active.
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Figure 2 Simulation results: waveforms of the MAS, EEG estimated, and sparsity pattern of the estimated BES matrix. Experiment setup:
2,052 sources, 128 EEG electrodes, 161 time instants, 4 main active sources with their corresponding 9 nearest neighbor sources also active.

We also compare the sparsity pattern of the estimated
BES matrix Ŝ against the sparsity pattern of the synthetic
BES matrix S, as well as the synthetic and predicted EEG
measurements.
As we can see from Figures 1 and 2, the Group Lasso

and Trace Norm regularizers do not reveal the correct
number of linear independent sources, while the Matrix
Factorization does: it finds out four linear independent
sources in both scenarios. To select such four linear inde-
pendent MAS, we find a basis for the Column Space(S̃�)

(using a QR factorization), where S̃ is a matrix whose
rows are a sorted version of the rows of S (sorted in a
descending order of their corresponding energy value). To
get the four linear independent MAS estimated by the
Group Lasso and Trace Norm regularizers, we followed
the same procedure described before and retained the first
four components of the basis of the Column Space(S̃�).
According to Figures 1 and 2, the Matrix Factorization

approach is able to estimate a BES matrix with the correct

rank and whose sparsity pattern follows closely the spar-
sity pattern of the true BES matrix, that is, both matrices
have a similar structure, which implies that the proposed
approach is able to induce the desired solution: A row-
structured sparse matrix, whose nonzero rows encode the
linear relation between the active sources and their cor-
responding nearest neighbor sources. Using the estimated
BES matrix, the Matrix Factorization approach is also
able to predict a smooth version of the noisy EEG, and
the waveforms of the estimated MAS follow closely the
waveforms of the true MAS.
As we can see from Figures 1 and 2, Group Lasso is

able to estimate a BES matrix with a similar row-sparsity
pattern to the true BES matrix, but it does not take into
account the linear relation between the nonzero rows,
which can be seen from the rank of the estimated BES
matrix. The waveforms of the estimated MAS are very
similar to the true MAS, but they are not so smooth as the
ones estimated by the Matrix Factorization approach.
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Figure 3 Localization of the MAS,N = 413 sources. From left to right: Ground Truth, Matrix Factorization, Group Lasso, and Trace Norm.

Figure 4 Localization of the MAS,N = 2, 052 sources. From left to right: Ground Truth, Matrix Factorization, Group Lasso, and Trace Norm.
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As we can see from Figures 1 and 2, the Trace Norm
regularizer takes into account the linear relation of the
active sources by inducing solutions which are low rank,
but, on the other hand, it does not take into account
the structured sparsity pattern of the BES matrix. All
of this implies that the Trace Norm tends to induce
low rank dense solutions, which are not biologically
plausible.
According to Figures 3 and 4, the position of the

MAS obtained from the BES matrix estimated by the
Matrix Factorization approach, the Group Lasso, and
Trace Norm regularizers follows closely the position of
the true MAS. Nevertheless, it is worth highlighting that
before selecting the MAS, we first need an accurate esti-
mation of their number, and the Group Lasso and Trace
Norm regularizers were not able to get a precise estimate
of it, only the Matrix Factorization were able to.
From these results, we can see that the proposedMatrix

Factorization approach outperforms both the Group
Lasso and Trace Norm regularizers. The main reason for
this is because it combines their twomain features: it com-
bines the structured sparsity (from Group Lasso) and the
low rank (from Trace Norm) into one unified framework,
which implies that it is able to induce structured sparse-
low-rank solutions which are biologically plausible: few
active sources, with linear relations between them.

8 Conclusions
We have presented a novel approach to solve the EEG
inverse problem, which is based on matrix factoriza-
tion and regularization. Our method combines the ideas
behind the Group Lasso (structured sparsity) and Trace
Norm (low rank) regularizers into one unified framework.
We have also developed and analyzed the convergence
of an alternating minimization algorithm to solve the
resulting nonsmooth-nonconvex regularization problem.
Finally, using simulation studies, we have compared our
method with the Group Lasso and Trace Norm regulariz-
ers when they are applied directly to the target matrix, and
we have shown the gain in performance obtained by our
method, hence proving the effectiveness and efficiency of
the proposed algorithm.
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