2,296 research outputs found

    Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the volcanically unperturbed lower stratosphere

    Get PDF
    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm−3 (A) and 0.05 μm3 cm−3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm−3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20–50% and 10–40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions

    Grapheme coding in L2:how do L2 learners process new graphemes?

    Get PDF
    International audienceGrapheme coding was examined in French Grade 6 and Grade 8 children and adults who learned English as a second language (L2). In Experiments 1 and 2, three conditions were compared in a letter detection task in L2: (1) simple grapheme (i.e., detect “a” in black); (2) complex language-shared grapheme (i.e., “a” in brain) and (3) complex L2-specific grapheme (i.e., “a” in beach). The data indicated that graphemes in L2 words were functional sub-lexical orthographic units for these L2 learners. Moreover, L2-specific graphemes took longer to process than language-shared complex graphemes. Using the same task, Experiment 3 examined phonological influences by manipulating the cross-language congruency of grapheme-to-phoneme mappings (detect “a” in have [congruent] vs. take [incongruent]). The outcome of this study offers preliminary evidence of graphemic coding during L2 word recognition both at the orthographic and the orthography-to-phonology mapping levels

    Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    Get PDF
    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere

    Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations

    Full text link
    We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the presence of primary CMB signal, radio point sources (detected as well as an unresolved background) and receiver noise, show that our algorithm is able to analyse jointly the data from six frequency channels, sample the posterior space of the model and calculate the Bayesian evidence very efficiently on a single processor. We also illustrate the robustness of our detection process by applying it to a field with radio sources and primordial CMB but no cluster, and show that indeed no cluster is identified. The extension of our methodology to the detection and modelling of multiple clusters in multi-frequency SZ survey data will be described in a future work.Comment: 12 pages, 7 figures, submitted to MNRA

    The holy blood and the holy grail: Myths of scientific racism and the pursuit of excellence in sport

    Get PDF
    Despite the continuing publication of research that suggests there is no scientific basis to 'race' as a biological category, theories of racial difference continue to be invoked within sport to explain the perceived dominance of black athletes. In the case of John Entine's controversial 'Taboo: why black athletes dominate sports and why we are afraid to talk about it' or undergraduate textbooks that suggest 'racial differences' in physique may significantly affect athletic performance, scientific racism is normalised in sport. In this article, the relationship between scientific racism and sport will be examined. Qualitative research with current sport scientists is used to investigate the socio-ethical tensions within the subject field of sport science between professionalism, scientism and the demand from external interests to produce results that help people in sport win medals. It will be shown that these tensions, combined with the history of race as a category in sport science, combine to create the discourse of scientific knowledge that reflects, rather than challenges, folk genetics of black athletic physicality
    corecore