17 research outputs found

    Nonlinear operators on graphs via stacks

    Get PDF
    International audienceWe consider a framework for nonlinear operators on functions evaluated on graphs via stacks of level sets. We investigate a family of transformations on functions evaluated on graph which includes adaptive flat and non-flat erosions and dilations in the sense of mathematical morphology. Additionally, the connection to mean motion curvature on graphs is noted. Proposed operators are illustrated in the cases of functions on graphs, textured meshes and graphs of images

    Volcanic SO2 layer height by TROPOMI/S5P: evaluation against IASI/MetOp and CALIOP/CALIPSO observations

    Get PDF
    Volcanic eruptions eject large amounts of ash and trace gases such as sulfur dioxide (SO2) into the atmosphere. A significant difficulty in mitigating the impact of volcanic SO2 clouds on air traffic safety is that these gas emissions can be rapidly transported over long distances. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. Within the European Space Agency (ESA) Sentinel-5p+ Innovation project, the S5P SO2 layer height (S5P+I: SO2LH) activities led to the improvements of the retrieval algorithm and generation of the corresponding near real-time S5P SO2 LH products. These are currently operationally provided, in near real-time, by the German Aerospace Center (DLR) within the framework of the Innovative Products for Analyses of Atmospheric Composition (INPULS) project. The main aim of this paper is to present its extensive verification, accomplished within the S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements from the IASI/Metop and CALIOP/CALIPSO instruments as well as assess its impact on the forecasts provided by the Copernicus Atmospheric Monitoring Service (CAMS). The mean difference between S5P and IASI observations for the Raikoke 2019, the Nishinoshima 2020 and the La Soufrière-St Vincent 2021 eruptive periods is ∼ 0.5 ± 3 km, while for the Taal 2020 eruption, a larger difference was found, between 3 ± 3 km and 4 ± 3 km. The comparison of the daily mean SO2 LH further demonstrates the capabilities of this near real-time product, with slopes between 0.8 and 1 and correlation coefficients ranging between 0.6 and 0.8. Comparisons between the S5P SO2 LH and the CALIOP/CALIPSO ash plumes revealed an expected bias at -2.5 ± 2 km, considering that the injected SO2 and ash plume locations do not always coincide over an eruption. Furthermore, the CAMS assimilation of the S5P SO2 LH product led to much improved model output against the non-assimilated IASI LH, with a mean difference of 1.5 ± 2 km, compared to the original CAMS analysis, and improved the geographical spread of the Raikoke volcanic plume following the eruptive days

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Aerosol indirect effects

    Get PDF
    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between tau a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2

    Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure

    No full text
    Importance In patients who require mechanical ventilation for acute hypoxemic respiratory failure, further reduction in tidal volumes, compared with conventional low tidal volume ventilation, may improve outcomes. Objective To determine whether lower tidal volume mechanical ventilation using extracorporeal carbon dioxide removal improves outcomes in patients with acute hypoxemic respiratory failure. Design, Setting, and Participants This multicenter, randomized, allocation-concealed, open-label, pragmatic clinical trial enrolled 412 adult patients receiving mechanical ventilation for acute hypoxemic respiratory failure, of a planned sample size of 1120, between May 2016 and December 2019 from 51 intensive care units in the UK. Follow-up ended on March 11, 2020. Interventions Participants were randomized to receive lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal for at least 48 hours (n = 202) or standard care with conventional low tidal volume ventilation (n = 210). Main Outcomes and Measures The primary outcome was all-cause mortality 90 days after randomization. Prespecified secondary outcomes included ventilator-free days at day 28 and adverse event rates. Results Among 412 patients who were randomized (mean age, 59 years; 143 [35%] women), 405 (98%) completed the trial. The trial was stopped early because of futility and feasibility following recommendations from the data monitoring and ethics committee. The 90-day mortality rate was 41.5% in the lower tidal volume ventilation with extracorporeal carbon dioxide removal group vs 39.5% in the standard care group (risk ratio, 1.05 [95% CI, 0.83-1.33]; difference, 2.0% [95% CI, −7.6% to 11.5%]; P = .68). There were significantly fewer mean ventilator-free days in the extracorporeal carbon dioxide removal group compared with the standard care group (7.1 [95% CI, 5.9-8.3] vs 9.2 [95% CI, 7.9-10.4] days; mean difference, −2.1 [95% CI, −3.8 to −0.3]; P = .02). Serious adverse events were reported for 62 patients (31%) in the extracorporeal carbon dioxide removal group and 18 (9%) in the standard care group, including intracranial hemorrhage in 9 patients (4.5%) vs 0 (0%) and bleeding at other sites in 6 (3.0%) vs 1 (0.5%) in the extracorporeal carbon dioxide removal group vs the control group. Overall, 21 patients experienced 22 serious adverse events related to the study device. Conclusions and Relevance Among patients with acute hypoxemic respiratory failure, the use of extracorporeal carbon dioxide removal to facilitate lower tidal volume mechanical ventilation, compared with conventional low tidal volume mechanical ventilation, did not significantly reduce 90-day mortality. However, due to early termination, the study may have been underpowered to detect a clinically important difference
    corecore