1,901 research outputs found
Recommended from our members
Numerical Simulation of Baroclinic Jovian Vortices
We examine the evolution of baroclinic vortices in a time-dependent, nonlinear numerical model of a Jovian atmosphere. The model uses a normal-mode expansion in the vertical, using the barotropic and first two baroclinic modes. Results for the stability of baroclinic vortices on an f plane in the absence of a mean zonal flow are similar to results of Earth vortex models, although the presence of a fluid interior on the Jovian planets shifts the stability boundaries to smaller length scales. The presence of a barotropic mean zonal flow in the interior stabilizes vortices against instability and significantly modifies the finite amplitude form of baroclinic instabilities. The effect of a zonal flow on a form of barotropic instability produces periodic oscillations in the latitude and longitude of the vortex as observed at the level of the cloud tops. This instability may explain some, but not all, observations of longitudinal oscillations of vortices on the outer planets. Oscillations in aspect ratio and orientation of stable vortices in a zonal shear flow are observed in this baroclinic model, as in simpler twodimensional models. Such oscillations are also observed in the atmospheres of Jupiter and Neptune. The meridional propagation and decay of vortices on a β plane is inhibited by the presence of a mean zonal flow. The direction of propagation of a vortex relative to the mean zonal flow depends upon the sign of the meridional potential vorticity gradient; combined with observations of vortex drift rates, this may provide a constraint on model assumption for the flow in the deep interior of the Jovian planets
Detailed analysis of data from heat pumps installed via the Renewable Heat Premium Payment Scheme
The RHPP policy provided subsidies for private householders, Registered social landlords and communities to install renewable heat measures in residential properties. Eligible measures included air and ground-source heat pumps, biomass boilers and solar thermal.
Around 18,000 heat pumps were installed via this scheme. DECC funded a detailed monitoring campaign, which covered 700 heat pumps (around 4% of the total). The aim of this monitoring campaign was to assess the efficiencies of the heat pumps and to estimate the carbon and bill savings and amount of renewable heat generated.
Data was collected from 31/10/2013 to 31/03/2015. This report represents the analysis of this data and represents the most complete and reliable data in-situ residential heat pump performance in the UK to date
Spectral estimation for spatial point patterns
This article determines how to implement spatial spectral analysis of point
processes (in two dimensions or more), by establishing the moments of raw
spectral summaries of point processes. We establish the first moments of raw
direct spectral estimates such as the discrete Fourier transform of a point
pattern. These have a number of surprising features that departs from the
properties of raw spectral estimates of random fields and time series. As for
random fields, the special case of isotropic processes warrants special
attention, which we discuss. For time series and random fields white noise
plays a special role, mirrored by the Poisson processes in the case of the
point process. For random fields bilinear estimators are prevalent in spectral
analysis. We discuss how to smooth any bilinear spectral estimator for a point
process. We also determine how to taper this bilinear spectral estimator, how
to calculate the periodogram, sample the wavenumbers and discuss the
correlation of the periodogram. In parts this corresponds to recommending
suitable separable as well as isotropic tapers in d dimensions. This, in
aggregation, establishes the foundations for spectral analysis of point
processes.Comment: 29 pages + 23 pages of supplements, 6 figure
Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling
[1] Automated flask sampling aboard small charter aircraft has been proposed as a low-cost, reliable method to greatly increase the density of measurements of CO2 mixing ratios in continental regions in order to provide data for assessment of global and regional CO2 budgets. We use data from the CO2 Budget and Rectification-Airborne 2000 campaign over North America to study the feasibility of using discrete ( flask) sampling to determine column mean CO2 in the lowest 4 km of the atmosphere. To simulate flask sampling, data were selected from profiles of CO2 measured continuously with an onboard ( in situ) analyzer. We find that midday column means can be determined without bias relative to true column means measured by the in situ analyzer to within 0.15 and better than 0.10 ppm by using 10 and 20 instantaneously collected flask samples, respectively. More precise results can be obtained by using a flask sampling strategy that linearly integrates over portions of the air column. Using less than 8 - 10 flasks can lead to significant sampling bias for some common profile shapes. Sampling prior to the breakup of the nocturnal stable layer will generally lead to large sampling bias because of the inability of aircraft to probe large CO2 gradients that often exist very close to the ground at night and during the early morning
Recommended from our members
Data-in-Place: Thinking through the Relations Between Data and Community
We present findings from a year-long engagement with a street and its community . The work is targeted at exploring how the production and use of data is bound up with place, both in terms of physical and social geography. We detail three strands of the project. First, we consider how residents have sought to curate existing data about the street in the form of an archive with physical and digital components. Second, we report endeavours to capture data about the street’s environment, especially of traffic moving through it. Third, we draw on the possibilities afforded by technologies for polling opinion. We reflect on how these engagements have: materialised distinctive relations between the community and their data; surfaced flows and contours of data , and spatial, temporal and social boundaries ;and enacted a multiplicity of ‘small worlds’. We consider how such a conceptualisation of data-in-place is relevant to the design of data technologies
The Escherichia coli MarA protein regulates the ycgZ-ymgABC operon to inhibit biofilm formation
The Escherichia coli marRAB operon is a paradigm for chromosomally encoded antibiotic resistance. The operon exerts its effect via an encoded transcription factor called MarA that modulates efflux pump and porin expression. In this work, we show that MarA is also a regulator of biofilm formation. Control is mediated by binding of MarA to the intergenic region upstream of the ycgZ-ymgABC operon. The operon, known to influence the formation of curli fibres and colanic acid, is usually expressed during periods of starvation. Hence, the ycgZ-ymgABC promoter is recognised by σ38 (RpoS)-associated RNA polymerase (RNAP). Surprisingly, MarA does not influence σ38 -dependent transcription. Instead, MarA drives transcription by the housekeeping σ70 -associated RNAP. The effects of MarA on ycgZ-ymgABC expression are coupled with biofilm formation by the rcsCDB phosphorelay system, with YcgZ, YmgA and YmgB forming a complex that directly interacts with the histidine kinase domain of RcsC
- …