2,039 research outputs found

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices

    Full text link
    Tunable oscillatory modes of electric-field domains in doped semiconductor superlattices are reported. The experimental investigations demonstrate the realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes is determined using an analytical and a numerical modeling of the dynamics of domain formation. Three different oscillatory modes are found. Their presence depends on the actual shape of the drift velocity curve, the doping density, the boundary condition, and the length of the superlattice. For most bias regions, the self-sustained oscillations are due to the formation, motion, and recycling of the domain boundary inside the superlattice. For some biases, the strengths of the low and high field domain change periodically in time with the domain boundary being pinned within a few quantum wells. The dependency of the frequency on the coupling leads to the prediction of a new type of tunable GHz oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure

    Measurement of miniband parameters of a doped superlattice by photoluminescence in high magnetic fields

    Full text link
    We have studied a 50/50\AA superlattice of GaAs/Al0.21_{0.21}Ga0.79_{0.79}As composition, modulation-doped with Si, to produce n=1.4×1012n=1.4\times 10^{12} cm2^{-2} electrons per superlattice period. The modulation-doping was tailored to avoid the formation of Tamm states, and photoluminescence due to interband transitions from extended superlattice states was detected. By studying the effects of a quantizing magnetic field on the superlattice photoluminescence, the miniband energy width, the reduced effective mass of the electron-hole pair, and the band gap renormalization could be deduced.Comment: minor typing errors (minus sign in eq. (5)

    Quasiperiodic time dependent current in driven superlattices: distorted Poincare maps and strange attractors

    Full text link
    Intriguing routes to chaos have been experimentally observed in semiconductor superlattices driven by an ac field. In this work, a theoretical model of time dependent transport in ac driven superlattices is numerically solved. In agreement with experiments, distorted Poincare maps in the quasiperiodic regime are found. They indicate the appearance of very complex attractors and routes to chaos as the amplitude of the AC signal increases. Distorted maps are caused by the discrete well-to-well jump motion of a domain wall during spiky high-frequency self-sustained oscillations of the current.Comment: 10 pages, 4 figure

    Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices

    Full text link
    A stochastic discrete drift-diffusion model is proposed to account for the effects of shot noise in weakly coupled, highly doped semiconductor superlattices. Their current-voltage characteristics consist of a number stable multistable branches corresponding to electric field profiles displaying two domains separated by a domain wall. If the initial state corresponds to a voltage on the middle of a stable branch and a sudden voltage is switched so that the final voltage corresponds to the next branch, the domains relocate after a certain delay time. Shot noise causes the distribution of delay times to change from a Gaussian to a first passage time distribution as the final voltage approaches that of the end of the first current branch. These results agree qualitatively with experiments by Rogozia {\it et al} (Phys. Rev. B {\bf 64}, 041308(R) (2001)).Comment: 9 pages, 12 figures, 2 column forma

    A novel variant in CMAH is associated with blood type AB in Ragdoll cats

    Get PDF
    Citation: Gandolfi, B., Grahn, R. A., Gustafson, N. A., Proverbio, D., Spada, E., Adhikari, B., . . . Helps, C. R. (2016). A novel variant in CMAH is associated with blood type AB in Ragdoll cats. Plos One, 11(5). doi:10.1371/journal.pone.0154973The enzyme cytidine monophospho-N-acetylneuraminic acid hydroxylase is associated with the production of sialic acids on cat red blood cells. The cat has one major blood group with three serotypes; the most common blood type A being dominant to type B. A third rare blood type is known as AB and has an unclear mode of inheritance. Cat blood type antigens are defined, with N-glycolylneuraminic acid being associated with type A and N-acetylneuraminic acid with type B. Blood type AB is serologically characterized by agglutination using typing reagents directed against both A and B epitopes. While a genetic characterization of blood type B has been achieved, the rare type AB serotype remains genetically uncharacterized. A genome-wide association study in Ragdoll cats (22 cases and 15 controls) detected a significant association between blood type AB and SNPs on cat chromosome B2, with the most highly associated SNP being at position 4,487,432 near the candidate gene cytidine monophospho-N-acetylneuraminic acid hydroxylase. A novel variant, c.364C>T, was identified that is highly associated with blood type AB in Ragdoll cats and, to a lesser degree, with type AB in random bred cats. The newly identified variant is probably linked with blood type AB in Ragdoll cats, and is associated with the expression of both antigens (N-glycolylneuraminic acid and N-acetylneuraminic acid) on the red blood cell membrane. Other variants, not identified by this work, are likely to be associated with blood type AB in other breeds of cat. © 2016 Gandolfi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore