5,342 research outputs found
Delivery of human apolipoprotein (apo) E to liver by an [E1(-), E3(-), polymerase(-), pTP(-)] adenovirus vector containing a liver-specific promoter inhibits atherogenesis in immunocompetent apoE-deficient mice
Recombinant adenovirus (rAd)-mediated apoE gene transfer to the liver of apoE(-/-) mice is anti-atherogenic. However, first generation rAd vectors were associated with immune clearance of transduced hepatocytes, while an improved [E1(-), E3(-) polymerase(-)] adenovirus vector that persisted in the liver, had transient effects due to cellular shutdown of the cytomegalovirus (CMV) promoter (Ad-CMV-apoE). Here, we utilise an improved class of rAd vector with multiple deletions in the E1, E3, polymerase and pTP (pre-terminal protein) genes, which contains a modular synthetic liver-specific promoter (LSP) to drive expression of the human apoE cDNA (Ad-LSP-apoE) for hepatic gene transfer. Approximately 1 year old apoE(-/-) mice were injected intravenously with 4x10(10) virus particles of either Ad-LSP-apoE or Ad-CMV-apoE. Animals were monitored for plasma apoE, total plasma cholesterol and plasma lipoprotein distribution. The effect of Ad-LSP-apoE on atheroma progression was assessed in animals killed at 8 and 28 weeks after the injections. Ad-LSP-apoE vector administration gave sustained, though low, levels of plasma apoE throughout the study period without inducing a humoral immune response, but failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. Animals killed 8 weeks after the injections, demonstrated no significant retardation of atherosclerosis, whereas aortic lesions in those killed at 28 weeks were significantly reduced by 30% ( P< 0.006) compared to untreated animals. In summary, the combination of a multiply deleted rAd vector with a liver-specific promoter provided sustained low levels of plasma apoE, resulting in significant retardation of aortic atherosclerotic lesions
Retardation of atherosclerosis in immunocompetent apolipoprotein (apo) E-deficient mice followingliver-directed administration of a [E1-, E3-,polymerase-] adenovirus vector containing the elongation factor-1a promoter driving expression of human apoE cDNA
Although gene transfer of human apolipoprotein E (apoE), a 34-kDa circulating glycoprotein, to the liver of apoEdeficient(apoE-/-) mice using recombinant adenoviral vectors (rAd) is antiatherogenic, its full therapeutic potentialhas yet to be realized. First generation vectors led to immune clearance of transduced hepatocytes, while animproved vector with adenovirus regions E1, E3 and DNA polymerase deleted also had transient effects due tocellular shutdown of the cytomegalovirus (CMV) promoter. Here, we have studied an alternative promoter from thecellular elongation factor 1a (EF-1a) gene, injecting 6-8 week old apoE-/- mice intravenously with 2x1010 virusparticles (vp) of the [E1-, E3-, polymerase-] rAd vector Ad-EF1·-apoE. Plasma apoE levels were low (18-55 ng/ml)and failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. By contrast, thehyperlipidaemic phenotype of apoE-/- mice treated with Ad-CMV-apoE (2x1010 vp) was transiently normalized.Nevertheless, at termination (265 days) the aortic lesion areas in animals given Ad-EF1·-apoE were significantlyreduced by 15% (P<0.05) compared to untreated animals, a decrease approaching that in Ad-CMV-apoE-treatedmice (23%; P<0.02). Importantly, the attenuation of apoE transgene expression noted with the CMV promoter wasabsent with the EF-1a promoter, which gave relatively sustained, albeit low, levels of plasma apoE throughout thestudy period
Apolipoprotein E delivery by peritoneal implantation of encapsulated recombinant cells improves the hyperlipidaemic profile in apoE-deficient mice
Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia.Recombinant CHO-E3 cells were encapsulated into either alginate poly-L-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation.Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [H-3]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-L-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies.We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis. (C) 2004 Elsevier B.V. All rights reserved
Cellular structure of -Brauer algebras
In this paper we consider the -Brauer algebra over a commutative
noetherian domain. We first construct a new basis for -Brauer algebras, and
we then prove that it is a cell basis, and thus these algebras are cellular in
the sense of Graham and Lehrer. In particular, they are shown to be an iterated
inflation of Hecke algebras of type Moreover, when is a field of
arbitrary characteristic, we determine for which parameters the -Brauer
algebras are quasi-heredity. So the general theory of cellular algebras and
quasi-hereditary algebras applies to -Brauer algebras. As a consequence, we
can determine all irreducible representations of -Brauer algebras by linear
algebra methods
Recommended from our members
The Berkeley Contact Lens Extended Wear Study. Part I : Study design and conduct.
ObjectiveThe primary aim of the Berkeley Contact Lens Extended Wear Study (CLEWS) was to test the hypotheses that extended wear of rigid gas-permeable (RGP) contact lenses with greater oxygen permeability (Dk) reduces the incidence of contact lens-associated keratopathy (CLAK) and increases the survival rate in RGP extended wear (EW). In this article we describe the clinical trial design in detail, present the results of subject recruitment and retention, and provide the baseline demographic and ocular characteristics of the CLEWS subjects, whose data will be analyzed to address the study aims in a companion article.DesignA randomized, concurrently controlled clinical trial.InterventionSubjects were fitted with day wear (DW) high-Dk RGP lenses and then adapted to EW. Subjects who adapted to EW were then randomly assigned to either high- or medium-Dk RGP lenses for 12 months of 6-nights/week EW.Main outcome measuresSlit-lamp assessment and grading of 17 possible keratopathies, measurement of refractive error and corneal curvature, and symptoms. Follow-up data were collected every 3 months.ResultsFrom 545 subjects entering the DW adaptation phase, 201 adapted to EW and were randomly assigned to medium- or high-Dk lenses for 12 months of EW. The baseline characteristics of the two study groups were similar and did not differ from the 344 DW subjects who failed to adapt to EW. The distributions of oxygen transmissibility for the two study groups were disjoint, indicating that each group received distinctly different levels of hypoxia.ConclusionsWe show that CLEWS was appropriately designed to address the study hypotheses, was conducted with regard for the safety of the subjects, and adhered to rigorous protocols designed to control for bias and ensure the integrity of study data. We establish the internal validity of between-group statistical comparisons and characterize our study population to permit informed evaluation of the applicability of our results to the contact lens-wearing population in general
The Berkeley Contact Lens Extended Wear Study. Part II : Clinical results.
ObjectiveTo describe the principal clinical outcomes associated with 12 months use of rigid gas-permeable (RGP) extended wear contact lenses and address two primary study questions: (1) does extended wear (EW) of high oxygen transmissibility (Dk/t) RGP lenses reduce the incidence of ocular complications, and (2) does the wearing of high-Dk/t lenses reduce the rate of failure to maintain 6-night RGPEW over 12 months?DesignA randomized, concurrently controlled clinical trial.InterventionSubjects who adapted to EW with high Dk (oxygen permeability) RGP lenses were randomized to either high Dk or medium-Dk RGP lenses for 12 months of 6-night EW.Main outcome measuresContact lens-associated keratopathies (CLAK), changes in refractive error and corneal curvature, and survival in EW.ResultsTwo hundred one subjects were randomized to medium or high-Dk lenses for 12 months of EW. Sixty-two percent of the subjects in each group completed 12 months of EW; however, the probability of failure was significantly greater for the medium-Dk group. Although the risk of complications was similar for the two groups, the number of CLAK events that led to termination were 16 versus 5 for the medium-Dk and high-Dk groups, respectively. This suggests that the type of adverse response or the inability to reverse an adverse event was different for the group being exposed to the lower oxygen dose.ConclusionsThe level of oxygen available to the cornea has a significant impact on maintaining successful RGP extended contact lens wear, but not on the initial onset of CLAK. The number of clinical events leading to termination was substantially higher for the medium Dk group, which suggests that corneal hypoxia is an important factor in the development of CLAK. Although overnight contact lens wear should be recommended with caution and carefully monitored for early detection of ocular complications, it appears that high-Dk RGP lenses can be a safe and effective treatment for correction of refractive error for most individuals who can adapt to EW
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms.
Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2,300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq'/Fm', within 4% of pre-shock values, whereas Fq'/Fm' in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xanthan at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the benefits of living in an EPS matrix for biofilm diatoms
Equality of Participation Online Versus Face to Face: Condensed Analysis of the Community Forum Deliberative Methods Demonstration
Online deliberation may provide a more cost-effective and/or less inhibiting
environment for public participation than face to face (F2F). But do online
methods bias participation toward certain individuals or groups? We compare F2F
versus online participation in an experiment affording within-participants and
cross-modal comparisons. For English speakers required to have Internet access
as a condition of participation, we find no negative effects of online modes on
equality of participation (EoP) related to gender, age, or educational level.
Asynchronous online discussion appears to improve EoP for gender relative to
F2F. Data suggest a dampening effect of online environments on black
participants, as well as amplification for whites. Synchronous online voice
communication EoP is on par with F2F across individuals. But individual-level
EoP is much lower in the online forum, and greater online forum participation
predicts greater F2F participation for individuals. Measured rates of
participation are compared to self-reported experiences, and other findings are
discussed.Comment: 14 pages, 10 tables, to appear in Efthimios Tambouris, Panos
Panagiotopoulos, {\O}ystein S{\ae}b{\o}, Konstantinos Tarabanis, Michela
Milano, Theresa Pardo, and Maria Wimmer (Editors), Electronic Participation:
Proceedings of the 7th IFIP WG 8.5 International Conference, ePart 2015
(Thessaloniki, August 30-September 2), Springer LNCS Vol. 9249, 201
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
- …
