6,951 research outputs found

    Recognising the ageing face: the role of age in face processing

    Get PDF
    The effects of age-induced changes on face recognition were investigated as a means of exploring the role of age in the encoding of new facial memories. The ability of participants to recognise each of six previously learnt faces was tested with versions which were either identical to the learnt faces, the same age (but different in pose and expression), or younger or older in age. Participants were able to cope well with facial changes induced by ageing: their performance with older, but not younger, versions was comparable to that with faces which differed only in pose and expression. Since the large majority of different age versions were recognised successfully, it can be concluded that the process of recognition does not require an exact match in age characteristics between the stored representation of a face and the face currently in view. As the age-related changes explored here were those that occur during the period of growth, this in turn implies that the underlying structural physical properties of the face are (in addition to pose and facial expression) invariant to a certain extent

    Factors influencing the accuracy of age-estimates of unfamiliar faces

    Get PDF
    Factors affecting the accuracy with which adults could assess the age of unfamiliar male faces aged between 5 and 70 years were examined. In the first experiment twenty-five 'young' adult subjects, aged 16-25, and twenty-five 'old' adults, aged 51-60, were used. Each subject saw five versions of three different faces: these consisted of an original version of each face and four manipulated versions of it. The manipulations consisted of mirror reversal, pseudo-cardioidal strain, thresholding, and elimination of all but the internal features of the face. The second experiment was similar except that a between-subjects design was used: each subject saw three faces for each age category of target face, but was exposed to only a single type of manipulation (plus a set of 'original' faces which were identical for all groups, so that the comparability of the different groups in age estimation could be checked). Results from both experiments were similar. Age estimates for unmanipulated 'original' faces were highly accurate, although subjects were most accurate with target faces that were within their own age range. Results for the manipulated faces implied that the importance of cardioidal strain as a necessary and sufficient cue to age may have been overestimated in previous reports: subjects' age estimates were accurate when cardioidal strain was absent from the stimulus, and poor when cardioidal strain was the only cue available

    A possible close supermassive black-hole binary in a quasar with optical periodicity

    Full text link
    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic, can be due to a variety of physical mechanisms, and is well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report on the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ±\pm 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of 9\sim9 years. While the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.Comment: 19 pages, 6 figures. Published online by Nature on 7 January 201

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on five research projects.United States Atomic Energy Commission (Contract AT(30-1) 1842

    Serum vitamin D levels, diabetes and cardio-metabolic risk factors in Aboriginal and Torres Strait Islander Australians

    Get PDF
    Assesses levels of serum 25(OH)D in Aboriginal and Torres Strait Islander Australians and explores relationships between 25(OH)D and cardio-metabolic risk factors and diabetes. Abstract Background: Low levels of serum 25 – hydroxy vitamin D (25(OH)D), have been associated with development of type 2 diabetes and cardiovascular disease (CVD); however there are limited data on serum 25(OH)D in Indigenous Australians, a population at high risk for both diabetes and CVD. We aimed to assess levels of serum 25(OH)D in Aboriginal and Torres Strait Islander Australians and to explore relationships between 25(OH)D and cardio-metabolic risk factors and diabetes. Methods: 592 Aboriginal and/or Torres Strait Islander Australian participants of The eGFR (estimated glomerular filtration rate) Study, a cross-sectional analysis of a cohort study performed in 2007 – 2011, from urban and remote centres within communities, primary care and tertiary hospitals across Northern Territory, Far North Queensland and Western Australia. Assessment of serum 25(OH)D, cardio-metabolic risk factors (central obesity, diabetes, hypertension, history of cardiovascular disease, current smoker, low HDL-cholesterol), and diabetes (by history or HbA1c ≥ 6.5%) was performed. Associations were explored between 25(OH)D and outcome measures of diabetes and number of cardio-metabolic risk factors. Results: The median (IQR) serum 25(OH)D was 60 (45 – 77) nmol/L, 31% had 25(OH)D <50 nmol/L. For participants with 25(OH)D < 50 vs ≥ 50 nmol/L, cardio-metabolic risk profile differed for: diabetes (54%, 36% p < 0.001), past history of cardiovascular disease (16%, 9%, p = 0.014), waist-hip ratio (0.98, 0.92, p < 0.001), urine albumin-creatinine ratio (2.7, 1.5 mg/mmol, p < 0.001). The OR (95% CI) for diabetes was 2.02 (1.03 – 3.95) for people in the lowest vs highest tertiles of 25(OH)D (<53 vs >72 nmol/L, respectively) after adjusting for known cardio-metabolic risk factors. Conclusion: The percentage of 25(OH)D levels <50 nmol/L was high among Aboriginal and Torres Strait Islander Australians from Northern and Central Australia. Low 25(OH)D level was associated with adverse cardio-metabolic risk profile and was independently associated with diabetes. These findings require exploration in longitudinal studies

    Design and Fabrication of sub-THz Steerable Photonic Transmitter 1×4 Array for Short-Distance Wireless Links

    Get PDF
    In this paper we present the latest results on the design, fabrication and test of stand-alone photonic devices devoted to ultra-high bandwidth wireless access networks operating near the Terahertz (THz) band. We review the sub-THz photonics-based technology devices developed as part of the TERAPOD project, comprising the monolithically integrated Silicon Nitride photonic integrated circuit for phase distribution, the 1×4 array of integrated Uni-Travelling Carrier Photo-Diodes (UTC-PDs) and the radiative design of the high-frequency four element linear patch antenna array based on Benzocyclobutene (BCB) layers. We also report the suitability to assemble all those components in a robust small-form factor hybrid package

    Building a Model of Collaboration Between Historically Black and Historically White Universities

    Get PDF
    Despite increases over the last two decades in the number of degrees awarded to students from underrepresented groups in science, technology, engineering, and mathematics (STEM) disciplines, enhancing diversity in these disciplines remains a challenge. This article describes a strategic approach to this challenge—the development of a collaborative partnership between two universities: the historically Black Elizabeth City State University and the historically White University of New Hampshire. The partnership, a type of learning organization built on three mutually agreed upon principles, strives to enhance opportunities for underrepresented students to pursue careers in the STEM disciplines. This article further describes six promising practices that framed the partnership, which resulted in the submission of nine proposals to federal agencies and the funding of four grants that led to the implementation, research, learning, and evaluation that followed

    Twists to the spin structure of the Ln9-diabolo motif exemplified in two {Zn2Ln2}[Ln9]{Zn2} coordination clusters

    Get PDF
    Two pentadecanuclear Zn4Ln11 [with Ln = Gd(1) or Dy(2)] coordination clusters, best formulated as {Zn2Ln2}[Ln9]{Zn2}, are presented. The central {Ln9} diabolo core has a {Zn2Ln2} handle motif pulling at two outer Ln ions of the central core via two {ZnLn} units, which also invest the system with C2 point symmetry. The resulting cluster motif is supported on two Zn “feet”, corresponding to the {Zn2} unit in the formula. A thorough investigation of the magnetic properties in the light of the properties of previously reported {Ln9} diabolo compounds was undertaken. Up to now, the spin structure of such diabolo motifs usually proves ambiguous. Our magnetic studies show that the orientation of the central spin in the {Gd9} diabolo plays a decisive role. In stabilizing the core by attachment of the {Zn}2+ “feet” and using the C2 symmetry related {ZnGd}5+ handles to influence the spin direction of the central Gd of the {Gd9} diabolo we can understand why the “naked” {Gd9} diabolo shows ambiguous spin structure. This then allowed us to elucidate the single molecule magnetic (SMM) properties of the Dy based compound 2 through disentangling the magnetic properties of the isostructural Gd based compound 1

    Analytic solutions of the Rolie Poly model in time-dependent shear

    Get PDF
    We consider shear flows that comprise of step changes in the shear rate. For these flows, we derive analytic solutions of the Rolie-Poly constitutive equation. Our method involves piecing together solutions for constant rate shear in a variety of flow rate regimes. We obtain solutions for interrupted shear, recoverable strain and non-linear relaxation following cessation of flow. Whenever strong flow is present we neglect reptation, as other mechanisms dominate and for interrupted shear our solution is approximate as we neglect convective constraint release. Our analytic solutions provide new insight in several ways. These include revealing the mechanism of some experimental features of these flows; suggesting a method to extract the polymer contribution to the normal stress in the velocity gradient direction (σyy) from shear stress measurements alone; and a method to isolate the influence of convective constraint release (CCR) from damping function measurements. We also run complementary GLaMM model calculations to verify that insight from our analytic approach translates to this more detailed model

    Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy

    Get PDF
    The exceptional activity for methane combustion of modular palladium-ceria core-shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core-shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium-ceria core-shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium-ceria core-shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst
    corecore