67 research outputs found

    Structure and functional motifs of GCR1, the only plant protein with a GPCR fold?

    Get PDF
    Whether GPCRs exist in plants is a fundamental biological question. Interest in deorphanizing new G protein coupled receptors (GPCRs), arises because of their importance in signaling. Within plants, this is controversial as genome analysis has identified 56 putative GPCRs, including GCR1 which is reportedly a remote homologue to class A, B and E GPCRs. Of these, GCR2, is not a GPCR; more recently it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix alignment method, which has been benchmarked against the the class A – class B - class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologues to class A, class B and class F GPCRs, and shown that GCR1 is closer to class A and /or class B GPCRs than class A, class B or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the 6 GPCR classes. Variability comparisons provide additional evidence that GCR1 homologues have the GPCR fold. From the alignments and a GCR1 comparative model we have identified motifs that are common to GCR1, class A, B and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fol

    Is There a Relationship Between Bovine Tuberculosis (bTB) Herd Breakdown Risk and Mycobacterium avium subsp. paratuberculosis Status? An Investigation in bTB Chronically and Non-chronically Infected Herds

    Get PDF
    Publication history: Accepted - 23 January 2019; Published - 14 February 2019.Background: Bovine tuberculosis (bTB; Mycobacterium bovis) remains a significant problem in a number of countries, and is often found where M. avium subsp. paratuberculosis (MAP) is also present. In the United Kingdom, bTB has been difficult to eradicate despite long-term efforts. Co-infection has been proposed as one partial mechanism thwarting eradication. Methods: A retrospective case-control study of 4,500 cattle herds in Northern Ireland, where serological testing of cattle for MAP, was undertaken (2004–2015). Blood samples were ELISA tested for MAP; infection of M. bovis was identified in herds by the comparative tuberculin test (CTT) and through post-mortem evidence of infection. Case-herds were those experiencing a confirmed bTB breakdown; control-herds were not experiencing a breakdown episode at the time of MAP testing. A second model included additional testing data of feces samples (culture and PCR results) to better inform herd MAP status. Multi-level hierarchical models were developed, controlling for selected confounders. A sensitivity analysis of the effect of MAP sample numbers per event and the prior timing of tuberculin-testing was undertaken. Results: 45.2% (n = 250) of case observations and 36.0% (3,480) of control observations were positive to MAP by ELISA (45.8% and 36.4% when including ancillary fecal testing, respectively). Controlling for known confounders, the adjusted odds ratio (aOR) for this association was 1.339 (95%CI:1.085–1.652; including ancillary data aOR:1.356;95%CI:1.099–1.673). The size-effect of the association increased with the increasing number of samples per event used to assign herd MAP status (aOR:1.883 at >2 samples, to aOR:3.863 at >10 samples), however the estimated CI increased as N decreased. 41.7% of observations from chronic herds were MAP serology-positive and 32.2% from bTB free herds were MAP positive (aOR: 1.170; 95%ci: 0.481–2.849). Discussion: Cattle herds experiencing a bTB breakdown were associated with increased risk of having a positive MAP status. Chronic herds tended to exhibit higher risk of a positive MAP status than bTB free herds, however there was less support for this association when controlling for repeated measures and confounding. MAP co-infection may be playing a role in the success of bTB eradiation schemes, however further studies are required to understand the mechanisms and to definitively establish causation

    Is There a Relationship Between Bovine Tuberculosis (bTB) Herd Breakdown Risk and Mycobacterium avium subsp. paratuberculosis Status? An Investigation in bTB Chronically and Non-chronically Infected Herds

    Get PDF
    Background: Bovine tuberculosis (bTB; Mycobacterium bovis) remains a significant problem in a number of countries, and is often found where M. avium subsp. paratuberculosis (MAP) is also present. In the United Kingdom, bTB has been difficult to eradicate despite long-term efforts. Co-infection has been proposed as one partial mechanism thwarting eradication.Methods: A retrospective case-control study of 4,500 cattle herds in Northern Ireland, where serological testing of cattle for MAP, was undertaken (2004–2015). Blood samples were ELISA tested for MAP; infection of M. bovis was identified in herds by the comparative tuberculin test (CTT) and through post-mortem evidence of infection. Case-herds were those experiencing a confirmed bTB breakdown; control-herds were not experiencing a breakdown episode at the time of MAP testing. A second model included additional testing data of feces samples (culture and PCR results) to better inform herd MAP status. Multi-level hierarchical models were developed, controlling for selected confounders. A sensitivity analysis of the effect of MAP sample numbers per event and the prior timing of tuberculin-testing was undertaken.Results: 45.2% (n = 250) of case observations and 36.0% (3,480) of control observations were positive to MAP by ELISA (45.8% and 36.4% when including ancillary fecal testing, respectively). Controlling for known confounders, the adjusted odds ratio (aOR) for this association was 1.339 (95%CI:1.085–1.652; including ancillary data aOR:1.356;95%CI:1.099–1.673). The size-effect of the association increased with the increasing number of samples per event used to assign herd MAP status (aOR:1.883 at >2 samples, to aOR:3.863 at >10 samples), however the estimated CI increased as N decreased. 41.7% of observations from chronic herds were MAP serology-positive and 32.2% from bTB free herds were MAP positive (aOR: 1.170; 95%ci: 0.481–2.849).Discussion: Cattle herds experiencing a bTB breakdown were associated with increased risk of having a positive MAP status. Chronic herds tended to exhibit higher risk of a positive MAP status than bTB free herds, however there was less support for this association when controlling for repeated measures and confounding. MAP co-infection may be playing a role in the success of bTB eradiation schemes, however further studies are required to understand the mechanisms and to definitively establish causation

    Genomic epidemiology of Mycobacterium bovis infection in sympatric badger and cattle populations in Northern Ireland

    Get PDF
    Bovine tuberculosis (bTB) is a costly, epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole-genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra-species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100 km2 bTB 'hotspot' in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Birth death models and TransPhylo analyses indicated that cattle were likely driving the local epidemic, with transmission from cattle to badgers being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission is not playing a major role in transmission dynamics. Our data were consistent with badgers playing a smaller role in transmission of M. bovis infection in this study site, compared to cattle. We hypothesize, however, that this minor role may still be important for persistence. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, with the role of wildlife being difficult to generalize.ISSN:2057-585

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochromecoxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons,and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation.Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Genomic epidemiology of Mycobacterium bovis infection in sympatric badger and cattle populations in Northern Ireland

    Get PDF
    Publication history: Accepted - 29 March 2023; Published - 25 May 2023.Bovine tuberculosis (bTB) is a costly, epidemiologically complex, multi-host, endemic disease. Lack of understanding of transmission dynamics may undermine eradication efforts. Pathogen whole-genome sequencing improves epidemiological inferences, providing a means to determine the relative importance of inter- and intra-species host transmission for disease persistence. We sequenced an exceptional data set of 619 Mycobacterium bovis isolates from badgers and cattle in a 100 km2 bTB 'hotspot' in Northern Ireland. Historical molecular subtyping data permitted the targeting of an endemic pathogen lineage, whose long-term persistence provided a unique opportunity to study disease transmission dynamics in unparalleled detail. Additionally, to assess whether badger population genetic structure was associated with the spatial distribution of pathogen genetic diversity, we microsatellite genotyped hair samples from 769 badgers trapped in this area. Birth death models and TransPhylo analyses indicated that cattle were likely driving the local epidemic, with transmission from cattle to badgers being more common than badger to cattle. Furthermore, the presence of significant badger population genetic structure in the landscape was not associated with the spatial distribution of M. bovis genetic diversity, suggesting that badger-to-badger transmission is not playing a major role in transmission dynamics. Our data were consistent with badgers playing a smaller role in transmission of M. bovis infection in this study site, compared to cattle. We hypothesize, however, that this minor role may still be important for persistence. Comparison to other areas suggests that M. bovis transmission dynamics are likely to be context dependent, with the role of wildlife being difficult to generalize.This work was funded by the Department of Agriculture, Environment and Rural Affairs for Northern Ireland (DAERA-NI) through its Evidence and Innovation programme – project no. 15/3/07. Additional funding was provided by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC) – grant numbers BB/P0105598 and BB/M01262X. A. A. is supported by a Bolashak International Scholarship

    British HIV Association guidelines for the treatment of TB/HIV coinfection 2011

    Get PDF
    • …
    corecore